1 印度阿姆利则 GNDU 电子技术系 2 印度帕蒂亚拉旁遮普大学 ECE 系 本文介绍了 FSO 链路的 2×2 多输入多输出 (MIMO) 和 4×4 MIMO 架构,并将其与传统 FSO 链路进行了比较。从 Q 因子和 BER 方面分析了性能。所有系统配置的参数值和环境条件保持不变。这项工作的主要目标是使用 MIMO 技术来提高自由空间光通信 (FSO) 中的系统性能。MIMO 通过在接收器处接收同一信号的多个独立副本来利用接收器的空间分集。在本文中,特别关注设计合适的 MIMO FSO 系统和分析自由空间光学系统的性能。只有 4×4 MIMO 配置才能在 670 m 范围内产生可接受的 Q 因子 (>6) 和 BER(<10 -9)。而 2×2 MIMO 系统能够提供高达 630 米范围的可接受 BER 和 Q 因子。这两种 MIMO 技术都比没有 MIMO 的 FSO 系统提供了显着的范围扩展,后者的最大允许范围为 580 米。(2021 年 11 月 23 日收到;2022 年 6 月 6 日接受)关键词:MIMO、FSO、调制、Q 因子、BER
范围 [1] psig 0–1 0–2 0–5 0–15 正灵敏度 [2] mV/psi 200 ±50 100 +50/-20 60 ±20 20 ±7 综合: 非线性,非重复性, 压力迟滞 [3] % FSO RSS max 1.5 1.5 0.75 0.50 非线性, 独立 % FSO typ 1.5 1.0 0.50 0.20 非重复性 % FSO typ 0.1 0.1 0.1 0.05 压力迟滞 % FSO typ 0.1 0.1 0.1 0.1 零测量输出 [4] mV max ±10 ±10 ±10 ±10 3x 范围后的零点漂移 ±% 3x FSO max 0.2 0.2 0.2 0.2 (典型值) (0.02) (0.02) (0.02) (0.02) 热零点漂移 从 0°F 至 200°F(-18°C 至 +93°C)±% FSO 最大 3 3 3 3 热灵敏度漂移 从 0°F 至 200°F(-18°C 至 +93°C)±% 最大 4 4 4 4 共振频率 Hz 55,000 70 000 85 000 130 000 3x 范围的非线性 % 3x FSO 2.5 2.5 2.0 1.0 每 psi/°F 的热瞬态响应 0.003 0.003 0.003 0.003 ISA-S37.10,第 209 页6.7,程序 I [5] psi/°C 0.005 0.005 0.005 0.005 闪光灯响应 [6] 当量 psi 0.01 0.01 0.03 0.1 预热时间 [7] ms 1 1 1 1 加速度灵敏度 当量 psi/g 0.0002 0.0002 0.0002 0.0002 爆破压力 (隔膜/参考侧) psi min 20/20 40/40 100/50 150/50
由于现代传感器系统的技术改进,飞机、卫星和无人机 (UAV) 等高空飞行平台上生成的数据量不断增加。由此产生的对机载和空间平台更高数据速率的需求推动了过去几年飞机和卫星激光通信终端的发展。德国航空航天中心通信与导航研究所在开发自由空间光学 (FSO) 终端方面有着成功的记录,这些终端可用于飞行平台,如平流层气球、飞机和小型卫星,以便实时将数据从移动平台传输到地面。除了 FSO 的高数据速率和针对射频 (RF) 干扰的安全传输通道等优势外,直接视线也是成功链接的必要条件。传统的 RF 通信更加稳健,受大气干扰或天气条件的影响较小。因此,新的系统概念已经开发出来,以受益于 FSO 提供的高数据速率和 RF 通信技术的可靠性。作为这一趋势的一部分,DLR 已经开发并展示了一种能够克服大气杂散效应的混合 FSO/RF 通信系统。本文概述了 DLR 目前的研究和发展,目标是结合 FSO 和 RF 通信的优势。它讨论了不同平台上可能的实施概念,并介绍了实施的 FSO/RF 混合通信系统在 1Gbps 的机载光学下行链路中的实验结果。关键词:自由空间光学、激光通信、混合链路、高数据速率
1) 压力范围如表 1 所示。2) 满量程输出 (FSO) 是规定最小压力下的输出信号与规定最大压力下的输出信号(标称 FSO = 10 V)之间的代数差。3) 总精度定义为测量值与室温 (RT) 下理想传递函数的最大偏差(%FSO),包括调整误差(偏移和量程)、非线性、压力迟滞和重复性。非线性是整个压力范围内测得的与最佳拟合直线 (BFSL) 的偏差。压力迟滞是压力在规定的最小压力或最大压力之间循环时,规定范围内任何压力下的输出值的最大偏差。重复性是 10 个压力循环内规定范围内任何压力下输出值的最大变化。 4) 整体误差(也称为总误差带,TEB)定义为整个温度范围(-25 ... 85°C)内测量值与理想传递函数的最大偏差(%FSO)。
摘要——本文对自由空间光通信系统进行了全面分析。自由空间光通信系统是一种现代化技术,其中表面环境充当发射器和接收器之间的传输介质,为了成功传输光信号,源和目的地都应该在 LOS 中。作为通道的外部环境可以是任何外层空间,可以是真空或适度的空气。FSO 系统通过未授权频段光通信频谱提供有吸引力的带宽增强。FSO 系统中的传输和接收主要依赖于外部通道,即外部环境,因为存在雨(小雨、中雨、大雨)、雾、雪等外部因素。FSO 链路的可靠性在很大程度上取决于外部或表面天气条件,这些条件会衰减在自由空间中传播的光信号强度。随着恶劣天气条件的加剧或加剧,光信号的强度会减弱。对于众多源,可以使用波长多路复用器将各种波长的光信号组合成单个源,同样,在目的地,可以使用波长解复用器分离组合波长的光信号。影响传输系统的其他方面可能包括特定波长或特定波段的光源类型、调制格式、要发送的数据量、使用的光电探测器类型等。特定波长上要传输的数据量以 Mbps 或 Gbps 为单位。这项研究主要侧重于各种天气条件,这些条件在 FSO 系统中起到了障碍作用。天气条件和数据量相结合是决定光信号从发射器到接收器的传输距离的主要考虑因素。通过优化 FSO 系统,它通过降低输出信号中的误码率 (BER) 来最大化源和目的地之间的距离。FSO 系统的最终结论可以通过 Q 因子(即信号质量)和使用眼图分析仪分析眼图来检查。
自由空间光通信 (FSOC) 也称为光无线通信,它一直是一个备受关注的话题,因为它利用了红外波段的宽广的未授权频谱,而不是已经拥挤的无线电频谱。当今的 FSO 技术能够在几公里的距离上每秒传输几千兆位的数据。事实证明,FSO 是解决连接问题的唯一可能解决方案,无论在何处安装光纤成本过高或困难重重。DOT 邀请印度初创企业/组织/研究和学术机构参与此合作项目,以开发一种 FSO 解决方案,该解决方案能够在至少 5 公里的距离内提供每波长至少 10G 带宽(全双工)。总带宽将取决于使用的波长数量。潜在参与者应具有光通信相关技术的可证明的专业知识,形式为完全或部分原型光学技术,包括但不限于组件/模块/硬件/软件/子系统或其最终产品。合作开发项目的最终成果应是可商业部署的 FSO 解决方案。项目成果将授权给感兴趣的参与者或第三方,可直接或与系统集成商合作进行大规模生产、营销和为最终用户部署。2)项目描述
对我们的行星系统的未来探索依赖于月球作为基地,并踏上了其他行星。因此,必须使用与该天体的高速数据连接。自由空间光学(FSO)通信将使连续宽带连接到地球。目前追求的概念包含数据中继卫星的绕着月球的卫星,每个卫星终端必须克服望远镜孔径限制的月球距离,并在光束指向和跟踪精确度上。我们提出了一个专用链接的概念,该链接来自安装在月球表面上的机器人望远镜站。我们研究了月球表面的这种FSO地面节点的概念架构,并在物理层的链路设计上聚焦。特别是,我们通过多个传输和接收供体增加了FSO通道容量。我们的发现鼓励在通常与空间任务一起使用的大链路距离的FSO通信中应用视线(LOS)多输入多输出(MIMO)技术,因为可以实现最大的MIMO容量。指导我们对链接几何形状的研究,这种连接在技术上似乎是可行的,该系统在相对较低的系统复杂性上与位于一个站点的接收器相对较低,而发射器相距仅几米。
内部威胁计划高级官员可以是 FSO 或符合要求的任何其他员工。如果 FSO 未被选为内部威胁高级官员,FSO 仍必须是该设施内部威胁计划不可或缺的成员。企业家族可以选择实施全公司内部威胁计划,并指定一名高级官员来建立和执行该计划。使用全公司内部威胁计划高级官员的每个已获批准的法律实体必须单独指定该人作为该法律实体的内部威胁高级官员,并将其列入关键管理人员 (KMP) 名单。当某个部门或分支机构根据保护要求获得 FCL 时,该部门或分支机构可以指定全公司内部威胁计划高级官员作为 KMP,或指定其他员工担任该部门或分支机构的内部威胁计划高级官员。
摘要:自由空间光学(FSO)通信提供的数据率的增加至关重要。在卫星和行星际网络中使用时,这些光学链路可以确保快速连接,但它们容易受到大气中断和长轨道延迟的影响。延迟和破坏耐受网络(DTN)体系结构可确保两个末端节点之间的可靠连接,而无需直接连接。与FSO链接一起使用时,这可以是资产,提供可以处理连接间歇性质的协议。本文对FSO和DTN的理论和最新研究进行了综述。这篇评论的目的是为研究无线卫星网络的研究提供动力,重点是使用Licklider传输协议。提出的评估确定了这些网络的可行性,提供了许多需要依靠的例子,并总结了所涉及的技术开发的最新阶段。
摘要 — 未来无线通信的路线图有望利用所有适合传输的频谱带,从微波到光频率,以支持比目前部署的解决方案快几个数量级的数据传输和更低的延迟。目前尚未得到充分利用的中红外 (mid-IR) 频谱是这种设想的全光谱无线通信范式的基本组成部分。中红外区域的自由空间光 (FSO) 通信最近引起了极大兴趣,因为它们具有低传播损耗和高大气扰动耐受性的内在优点。未来可行的中红外 FSO 收发器的发展需要半导体源来满足高带宽、低能耗和小占用空间的要求。在这种情况下,量子级联激光器 (QCL) 似乎是一种有前途的技术选择。在这项工作中,我们展示了一个由 4.65 µ m 直接实现的中红外 FSO 链路的实验演示