*地址通信:朱莉娅·施莱茨基(Julia Schaletzky),jschaletzky@berkeley.edu,James A. Olzmann,olzmann@berkeley.edu。作者贡献J.M.H.,K.B.,J.A.O。和J.S.构思了该项目并设计了实验。J.M.H. 和J.A.O. 写了手稿。 所有作者都阅读,编辑并为手稿做出了贡献。 J.M.H. 进行了大多数实验。 J.M.H.,K.B。和E.W. 进行了小分子筛选并分析了数据。 Z.L. 进行了球体测定。 J.M.H. 和M.R. 进行了脂质过氧化测定法。 I.L.O. 有助于分析黑色素瘤系。 J.M.H. 和M.A.R. 进行了Bodipy C11实验。 S.J.D.,K.K.D.和M.L. 提供了关键的试剂和指导。 C.E.D.,J.M.H。和K.B. 纯化的蛋白质并对FSP1活性进行了体外分析。 J.D.M. 进行并分析了FSEN1药代动力学和微粒体稳定性实验。J.M.H.和J.A.O.写了手稿。所有作者都阅读,编辑并为手稿做出了贡献。J.M.H. 进行了大多数实验。 J.M.H.,K.B。和E.W. 进行了小分子筛选并分析了数据。 Z.L. 进行了球体测定。 J.M.H. 和M.R. 进行了脂质过氧化测定法。 I.L.O. 有助于分析黑色素瘤系。 J.M.H. 和M.A.R. 进行了Bodipy C11实验。 S.J.D.,K.K.D.和M.L. 提供了关键的试剂和指导。 C.E.D.,J.M.H。和K.B. 纯化的蛋白质并对FSP1活性进行了体外分析。 J.D.M. 进行并分析了FSEN1药代动力学和微粒体稳定性实验。J.M.H.进行了大多数实验。J.M.H.,K.B。和E.W. 进行了小分子筛选并分析了数据。 Z.L. 进行了球体测定。 J.M.H. 和M.R. 进行了脂质过氧化测定法。 I.L.O. 有助于分析黑色素瘤系。 J.M.H. 和M.A.R. 进行了Bodipy C11实验。 S.J.D.,K.K.D.和M.L. 提供了关键的试剂和指导。 C.E.D.,J.M.H。和K.B. 纯化的蛋白质并对FSP1活性进行了体外分析。 J.D.M. 进行并分析了FSEN1药代动力学和微粒体稳定性实验。J.M.H.,K.B。和E.W.进行了小分子筛选并分析了数据。Z.L.进行了球体测定。J.M.H. 和M.R. 进行了脂质过氧化测定法。 I.L.O. 有助于分析黑色素瘤系。 J.M.H. 和M.A.R. 进行了Bodipy C11实验。 S.J.D.,K.K.D.和M.L. 提供了关键的试剂和指导。 C.E.D.,J.M.H。和K.B. 纯化的蛋白质并对FSP1活性进行了体外分析。 J.D.M. 进行并分析了FSEN1药代动力学和微粒体稳定性实验。J.M.H.和M.R.进行了脂质过氧化测定法。I.L.O. 有助于分析黑色素瘤系。 J.M.H. 和M.A.R. 进行了Bodipy C11实验。 S.J.D.,K.K.D.和M.L. 提供了关键的试剂和指导。 C.E.D.,J.M.H。和K.B. 纯化的蛋白质并对FSP1活性进行了体外分析。 J.D.M. 进行并分析了FSEN1药代动力学和微粒体稳定性实验。I.L.O.有助于分析黑色素瘤系。J.M.H. 和M.A.R. 进行了Bodipy C11实验。 S.J.D.,K.K.D.和M.L. 提供了关键的试剂和指导。 C.E.D.,J.M.H。和K.B. 纯化的蛋白质并对FSP1活性进行了体外分析。 J.D.M. 进行并分析了FSEN1药代动力学和微粒体稳定性实验。J.M.H.和M.A.R.进行了Bodipy C11实验。S.J.D.,K.K.D.和M.L. 提供了关键的试剂和指导。 C.E.D.,J.M.H。和K.B. 纯化的蛋白质并对FSP1活性进行了体外分析。 J.D.M. 进行并分析了FSEN1药代动力学和微粒体稳定性实验。S.J.D.,K.K.D.和M.L.提供了关键的试剂和指导。C.E.D.,J.M.H。和K.B. 纯化的蛋白质并对FSP1活性进行了体外分析。 J.D.M. 进行并分析了FSEN1药代动力学和微粒体稳定性实验。C.E.D.,J.M.H。和K.B.纯化的蛋白质并对FSP1活性进行了体外分析。J.D.M. 进行并分析了FSEN1药代动力学和微粒体稳定性实验。J.D.M.进行并分析了FSEN1药代动力学和微粒体稳定性实验。
针对COVID-19的疫苗接种是预防疾病并发症的主要方法,鉴于截至2020年10月,缺乏批准的药物治疗药。 1对疫苗犹豫和不信任的担忧是在大流行病发作之前被世界卫生组织提出的主要全球威胁,并因与消息传递和虚假信息相矛盾而进一步加剧了。 2通过识别特定人群以及导致疫苗犹豫和不信任的根本因素,可以改善疫苗接种策略和消息传递以改变大流行的潮流。 随着免疫努力的增加,最初的报告表明,共同疫苗接种意图是混合的。 在2020年末,美国调查显示,有56%至69%的成年受访者将接受疫苗。 3个与不愿接受疫苗有关的因素是女性,针对COVID-19的疫苗接种是预防疾病并发症的主要方法,鉴于截至2020年10月,缺乏批准的药物治疗药。1对疫苗犹豫和不信任的担忧是在大流行病发作之前被世界卫生组织提出的主要全球威胁,并因与消息传递和虚假信息相矛盾而进一步加剧了。2通过识别特定人群以及导致疫苗犹豫和不信任的根本因素,可以改善疫苗接种策略和消息传递以改变大流行的潮流。随着免疫努力的增加,最初的报告表明,共同疫苗接种意图是混合的。在2020年末,美国调查显示,有56%至69%的成年受访者将接受疫苗。3个与不愿接受疫苗有关的因素是女性,
缩写:Ad5,腺病毒 5 型;Ad35,腺病毒 35 型;AFP,甲胎蛋白;CAR,柯萨奇病毒和腺病毒受体;CEA,癌胚抗原;CTC,循环肿瘤细胞;ctDNA,无细胞肿瘤 DNA;EGFP,增强型绿色荧光蛋白;EMT,上皮-间质转化;EV,细胞外囊泡;FSP1,成纤维细胞特异性蛋白 1;GFP,绿色荧光蛋白;HCC,肝细胞癌;HSV1,人类单纯病毒 1 型;hTERT,人类端粒酶逆转录酶;Id1,DNA 结合抑制剂 1;IL-1β,白细胞介素-1β;miRNA,微小 RNA;PDAC,胰腺导管腺癌;PDT,光动力疗法;PSA,前列腺特异性抗原;PSES,前列腺特异性增强子序列; PSMA,前列腺特异性膜抗原;RFP,红色荧光蛋白;ROS,活性氧;SEAP,分泌性胚胎碱性磷酸酶;TME,肿瘤微环境。
抽象目标本研究的目的是确定Tenascin-C(TNC)在肠新骨形成中的作用,并探索潜在的分子机制。方法是从手术期间从强硬性脊柱炎(AS)的患者那里获得的韧带组织样品。建立了胶原蛋白抗体诱导的关节炎和DBA/1模型,以观察诱发的新骨形成。TNC表达。在动物模型中进行了TNC的全身抑制作用或遗传消融。通过原子力显微镜测量细胞外基质(ECM)的机械性能。通过RNA测序分析TNC的下游途径,并在体外和体内通过药理学调节确认。通过单细胞RNA测序(SCRNA-SEQ)分析TNC的细胞来源,并通过免疫荧光染色确认。结果在韧带和动物模型患者的诱发组织中异常上调TNC。TNC抑制作用显着抑制了诱发新骨形成。 功能分析表明,TNC通过增强内软骨骨化过程中的软骨分化来促进新的骨形成。 机械上,TNC抑制了ECM的粘附力,从而激活了下游河马/与YES相关的蛋白质信号传导,进而增加了软骨基因的表达。 SCRNA-SEQ和免疫荧光染色进一步表明,TNC主要由成纤维细胞特异性蛋白-1(FSP1)+成纤维细胞分泌。TNC抑制作用显着抑制了诱发新骨形成。功能分析表明,TNC通过增强内软骨骨化过程中的软骨分化来促进新的骨形成。机械上,TNC抑制了ECM的粘附力,从而激活了下游河马/与YES相关的蛋白质信号传导,进而增加了软骨基因的表达。SCRNA-SEQ和免疫荧光染色进一步表明,TNC主要由成纤维细胞特异性蛋白-1(FSP1)+成纤维细胞分泌。结论炎症引起的FSP1+成纤维细胞对TNC的异常表达,通过抑制ECM粘附力并激活HIPPO信号传导来促进肠新骨形成。
受调节的细胞死亡是一种基本的生物学过程,在维持组织稳态和消除受损或不必要的细胞方面起着至关重要的作用。铁死亡是一种铁依赖性过程,特征是氧化和受损脂质的积累,从而导致程序性细胞死亡。在调节这一过程的铁死亡途径基因中,可以考虑GPX4、TFRC、ACSL4、FSP1、SLC7A11 和 PROM2。有许多众所周知的铁死亡途径调节剂,本综述将对此进行讨论。不同组织来源的细胞对这些调节剂表现出敏感或抗性表型。在某些情况下,细胞治疗过程中会发生意外变化,表明可能存在调节死亡途径。我们假设细胞(尤其是结直肠癌细胞系)从铁敏感性转变为铁抗性可能是诱导化学抗性的结果。利用 CRISPR/Cas-9 基因组编辑等新技术,可以实现诱导表型“转换”。
衍生的类器官(PDOS)[7]。使用CyTO3D®活死测定试剂盒,它们在卵巢癌PDO中有效地确定了跨不同类器官线的卵巢癌PDO的活死细胞(图3A)[7]。他们进一步研究了卵巢癌衍生的类器官中的卡铂 - 癌症耐药性,这些类器官表现出凋亡细胞群的增加(用CyTO3D®活死测定套件标记),而miR-1287- 5p水平升高(图3B)[8]。Miao H等人进行的一项药物发现研究使用CYTO3D®活死测定试剂盒在3D PDOS中鉴定活细胞在识别卵巢癌PDOS中DNA损伤修复中识别效力毒化抑制蛋白1(FSP1)的新作用(图3C)[9]。Markus Morkel的另一项癌症研究使用Cyto3D®活死测定试剂盒来确定结直肠癌组织衍生的PDOS的细胞活力[10]。
•Wang,H.,Zhang,Y.,Miao,H.,Xu,T.,Nie,X。,&Cheng,W。(2024)。circrad23b促进卵巢癌细胞系和类器官中的增殖和卡铂的耐药性。癌细胞国际,24(1)。https://doi.org/10.1186/s12935-024-03228-1•Miao,H.,Meng,H.,Zhang,Y.FSP1抑制作用通过非肉毒作术机制增强了BRCA卵巢癌患者的Olaparib敏感性。细胞死亡与分化,1-14。https://doi.org/10.1038/s41418-024-024-01263-z•Babl,N. Kreutz,M。和Schnell,A。(2023)。低密度脂蛋白平衡T细胞代谢,并增强了HCT116球体模型中对抗PD-1阻滞的反应。肿瘤学的前沿,13。https://doi.org/10.3389/fonc.2023.1107484•Belén,A.,Sacconi,A.,A.,Tremante,E. Silvani,A.,Pollo,B.,Garufi,C.,Ramponi,S.,Simonetti,G.,Ciusani,E.(2023)。通过人神经胶质瘤中的TKS4/TKS5/EFHD2调制,诊断为循环miRNA签名作为细胞侵袭的编排。实验与临床癌症研究杂志,42(1)。https://doi.org/10.1186/s13046-023-02639-8
铁凋亡是一种程序性细胞死亡的一种形式,其特征是细胞内亚铁离子水平升高和脂质过氧化增加。自2012年发现和表征以来,在理解铁凋亡的调节机制和病理生理功能方面取得了长足的进步。最近的发现表明,许多器官损伤(例如,缺血/再灌注损伤)和退化性病理(例如主动脉夹层和神经退行性疾病)是由铁毒性造成的。相反,铁凋亡不足与肿瘤发生有关。此外,最近的一项研究揭示了在生理条件下肌凋亡对造血干细胞的影响。The regulatory mechanisms of ferroptosis identified to date include mainly iron metabolism, such as iron transport and ferritinophagy, and redox systems, such as glutathione peroxidase 4 (GPX4)-glutathione (GSH), ferroptosis-suppressor-protein 1 (FSP1)-CoQ 10 , FSP1-vitamin K (VK),二氢易能酸酯脱氢酶(DhoDH)-COQ和GTP环氢酶1(GCH1) - 四氢异物蛋白酶(BH 4)。最近,越来越多的研究表明,表观遗传机制(尤其是DNA,RNA和蛋白甲基化)在铁铁作用中起着重要的调节作用。在这篇综述中,我们对迄今为止确定的铁吞作用的分子机制和调节网络进行了批判性分析,重点是DNA,RNA和蛋白甲基化的调节作用。此外,我们讨论了一些辩论的发现和未解决的问题,这些问题应该是该领域未来研究的重点。
目的:近年来已经证明了从间充质干细胞(MSC)获得的外骨干细胞(MSC)的外泌体的治疗益处,但近年来已经证明了这些外泌体(SCI),但确切的机制仍然未知。在这项研究中,研究了MSC衍生外泌体(MSC-EXO)在急性SCI中的功效和机制。Methods: By utilizing a BV2 ferroptosis cellular model and an SCI rat model, we investigat ed the effects of MSC-Exo on iron death related indicators and NF-E2 related factor 2 (Nrf2)/ GTP cyclolase I (GCH1)/5,6,7,8-tetrahydrobiopterin (BH4) signaling axis, as well as their therapeutic effects on SCI老鼠。结果:结果表明,MSC-EXO有效抑制了亚铁铁,脂质过氧化产物丙二醛和活性氧的产生,以及促进性促进性氧,以及促进性促进性氧化物,前列腺素 - 雌激素 - 遗传过氧化物氧化含量。同时,他们上调了抑制铁的抑制剂FTH-1(铁蛋白重链1),SLC7A11(Solute Carrier家族7成员11),FSP1(铁毒性抑制蛋白1)和GPX4(GPX4)和GPX4(谷胱甘肽过氧化物酶4),有助于增强神经系统的SCI Rats。进一步的分析表明,NRF2/GTP/BH4信号通路在抑制铁毒性中的关键作用。此外,发现MSC-EXO通过激活NRF2/GCH1/BH4轴来抑制脂多糖诱导的BV2细胞和SCI大鼠的脂肪吞噬作用。结论:总而言之,该研究表明,MSC-EXO通过NRF2/GCH1/BH4轴减轻小胶质细胞纤维毒性,显示出在SCI后保持和恢复神经功能的潜力。
缩写:ANG,血管生成素;ANXA1,膜联蛋白A1;ATP,三磷酸腺苷;ATRA,全反式维甲酸;BCC,乳腺癌细胞;BDL,胆管结扎;BSA,牛血清白蛋白;BXPC-3,胰腺癌细胞系;CAF,癌相关成纤维细胞;CAP,可裂解两亲肽;CD26,二肽基肽酶-4;CD,分化簇;CLSM,共聚焦激光扫描显微镜;CM-101,胶原蛋白靶向探针;CPP,细胞穿透肽;CSC,癌症干细胞;CTC,循环肿瘤簇;CXCR,趋化因子受体;DCE,动态对比增强;DGL,树枝状移植聚-L-赖氨酸; DOTA,2,2 0,2 00,2 000-(1,4,7,10-四氮杂环十二烷-1,4,7,10-四基)四乙酸;DOX,阿霉素;DRP,损伤反应程序;DTPA,二乙烯三胺五乙酸酯;EA,鞣花酸;ECM,细胞外基质;EGFR,表皮生长因子受体;EMT,上皮-间质转化;EPR,增强渗透和滞留;ER,雌激素受体;FAK,粘着斑激酶;FAP,成纤维细胞活化蛋白;FAPI,FAP 抑制剂;FDA,食品药品监督管理局;FDG,氟脱氧葡萄糖;FITC,异硫氰酸荧光素;FOLFIRI,5-氟尿嘧啶,亚叶酸,伊立替康; FOLFIRINOX,5-氟尿嘧啶、亚叶酸钙、伊立替康和奥沙利铂的组合;FPR2,甲酰肽受体 2;FSP1,成纤维细胞特异性蛋白 1;FU,5-氟尿嘧啶;GA,18b-甘草次酸;GBq,千兆贝克勒尔;GEM,吉西他滨;GPER,G 蛋白偶联雌激素受体;GSH,谷胱甘肽;HA,透明质酸;HBSS,汉克斯平衡盐溶液;HER2,人表皮生长因子受体 2;HGF,肝细胞生长激素;HIF,缺氧诱导因子;HRCT,高分辨率计算机断层扫描;HSA,人血清白蛋白;HSP47+,热休克蛋白 47; HSPG2,硫酸肝素蛋白聚糖 2;HSTS26T,人软组织癌;HSV,单纯疱疹病毒;ID/g,每克注射剂量;IFN,干扰素;IFP,间质液体压力;IGF1,胰岛素样生长因子;IL,白细胞介素;IPF,特发性肺纤维化;IPI-926,Hedgehog 通路抑制剂;ITGA11,整合素亚基 α 11;ITGA5,整合素亚基 α 5;JAK,Janus 激酶;JNK,Jun N - 末端激酶;KPC,胰腺导管腺癌的临床相关模型;KRAS,Kirsten 大鼠肉瘤病毒;LCP,脂质磷酸钙纳米颗粒;LOXL2,赖氨酰氧化酶样 2; LPD,脂质包被的鱼精蛋白 DNA 复合物;LPP,脂肪瘤首选伴侣;LST-Lip,氯沙坦包裹的脂质体;LXA4,脂氧素 A4;MAPK,丝裂原活化蛋白激酶;MCT4,单羧酸转运蛋白 4;MET,肝细胞生长因子受体;MHC,主要组织相容性复合体;MMP,基质金属蛋白酶;MPS,单核吞噬细胞系统;MRI,磁共振成像;MSC,间充质干细胞;mTOR,哺乳动物雷帕霉素靶蛋白;MU89,人黑色素瘤;NF,正常成纤维细胞;NH 2,胺基;NK,自然杀伤细胞;NO 2,一氧化氮;NODAGA,1,4,7-三氮杂环壬烷,1-戊二酸-4,7-乙酸;NP,纳米粒子;NSCLC,非小细胞肺癌;PAMAM,聚酰胺胺;PD-1,程序性细胞死亡蛋白 1;PDAC,胰腺导管腺癌;PDGF,血小板衍生生长因子;PDGFR,PDGF 受体;PDT,光动力疗法;PDX,患者来源的异种移植;PEG,聚乙二醇;PEGPH20,重组人透明质酸酶 PH20 的聚乙二醇化形式;PET,正电子发射断层扫描;PFT,周细胞向成纤维细胞转变;PGE2,前列腺素 E2;PP,聚乙二醇-聚己内酯;PSC,胰腺星状细胞;PSMA,前列腺特异性膜抗原;PTC,乳头状甲状腺癌;PTX,紫杉醇; QD,量子点;QP,槲皮素磷酸盐;RGD,三肽精氨酸-甘氨酸-天冬氨酸;RNA,核糖核酸;ROCK,Rho 相关蛋白激酶;ROS,活性氧;RUNX3,Runt 相关转录因子 3;SATB,特殊 AT 富集序列结合蛋白 1;SBRT,立体定向放射治疗;SDF-1,基质衍生因子 1;a -SMA,α 平滑肌;SMO,平滑受体;SNAI1,Snail 家族转录抑制因子 1;SPECT,单光子发射计算机断层扫描;SRBC,富含基质的膀胱癌;STAT,信号转导和转录激活因子;SUV,标准化摄取值;TAM,肿瘤相关巨噬细胞;TGF- b,转化生长因子;TIE2,血管生成素受体; TKI,酪氨酸激酶抑制剂;TME,肿瘤微环境;TNC,腱糖蛋白 C;TNF,肿瘤坏死因子;TRAIL,肿瘤坏死因子相关凋亡诱导配体;TSL,热敏脂质体;TSP-1,血小板反应蛋白-1;UMUC3,富含基质的膀胱癌细胞系;VCAM-1,血管细胞粘附分子 1;VDR,维生素 D 受体;VEGF,血管内皮生长因子;VEGFR,VEGF 受体;YAP,是相关蛋白 1。⇑ 通讯作者。电子邮箱地址:j.prakash@utwente.nl (J. Prakash)、tlammers@ukaachen.de (T. Lammers)、smriti.singh@mr.mpg.de (S. Singh)。1 贡献均等。基质衍生因子 1;a -SMA,α 平滑肌;SMO,平滑受体;SNAI1,Snail 家族转录抑制因子 1;SPECT,单光子发射计算机断层扫描;SRBC,富含基质的膀胱癌;STAT,信号转导和转录激活因子;SUV,标准化摄取值;TAM,肿瘤相关巨噬细胞;TGF- b,转化生长因子;TIE2,血管生成素受体;TKI,酪氨酸激酶抑制剂;TME,肿瘤微环境;TNC,腱糖蛋白 C;TNF,肿瘤坏死因子;TRAIL,肿瘤坏死因子相关凋亡诱导配体;TSL,热敏脂质体;TSP-1,血小板反应蛋白-1;UMUC3,富含基质的膀胱癌细胞系;VCAM-1,血管细胞粘附分子 1; VDR,维生素 D 受体;VEGF,血管内皮生长因子;VEGFR,VEGF 受体;YAP,是相关蛋白 1。⇑ 通讯作者。电子邮箱地址:j.prakash@utwente.nl (J. Prakash)、tlammers@ukaachen.de (T. Lammers)、smriti.singh@mr.mpg.de (S. Singh)。1 贡献相同。基质衍生因子 1;a -SMA,α 平滑肌;SMO,平滑受体;SNAI1,Snail 家族转录抑制因子 1;SPECT,单光子发射计算机断层扫描;SRBC,富含基质的膀胱癌;STAT,信号转导和转录激活因子;SUV,标准化摄取值;TAM,肿瘤相关巨噬细胞;TGF- b,转化生长因子;TIE2,血管生成素受体;TKI,酪氨酸激酶抑制剂;TME,肿瘤微环境;TNC,腱糖蛋白 C;TNF,肿瘤坏死因子;TRAIL,肿瘤坏死因子相关凋亡诱导配体;TSL,热敏脂质体;TSP-1,血小板反应蛋白-1;UMUC3,富含基质的膀胱癌细胞系;VCAM-1,血管细胞粘附分子 1; VDR,维生素 D 受体;VEGF,血管内皮生长因子;VEGFR,VEGF 受体;YAP,是相关蛋白 1。⇑ 通讯作者。电子邮箱地址:j.prakash@utwente.nl (J. Prakash)、tlammers@ukaachen.de (T. Lammers)、smriti.singh@mr.mpg.de (S. Singh)。1 贡献相同。
