摘要:木薯淀粉(C)胶卷,木薯淀粉/壳聚糖(C/CS)膜(C/CS)薄膜和木薯淀粉/壳聚糖/壳聚糖/柠檬草精油(C/CS/LEO)通过土壤埋葬20天的掩埋,使用重量损失,傅里叶传输式semmircred semrors semmose(FTIR)(FTIR)(FTIR)(FTIR)(FTIR)(ftir)。FTIR分析表明,官能团的去除与淀粉膜减肥相对应。从SEM进行的观察结果表明,电影在退化过程中的外观发生了变化。使用板数方法确定20天埋葬后的土壤微生物的数量。在第20天,对照样本显示的微生物计数明显少于所有处理。通过测量芽的长度,根新鲜的重量和射击新鲜重量,研究了淀粉膜对水疗(ipomoea aquatica)生长21天的影响。发现用C/CS和C/CS/LEO膜在土壤中种植的水经过21天,显示出相似的芽长,芽新鲜重量和根重量。然而,与在C膜和对照的土壤中生长的水经短相比,它明显更高(p <0.05)。该研究得出的结论是,释放的壳聚糖会影响水流的生长。
摘要:木薯淀粉(C)胶卷,木薯淀粉/壳聚糖(C/CS)膜(C/CS)薄膜和木薯淀粉/壳聚糖/壳聚糖/柠檬草精油(C/CS/LEO)通过土壤埋葬20天的掩埋,使用重量损失,傅里叶传输式semmircred semrors semmose(FTIR)(FTIR)(FTIR)(FTIR)(FTIR)(ftir)。FTIR分析表明,官能团的去除与淀粉膜减肥相对应。从SEM进行的观察结果表明,电影在退化过程中的外观发生了变化。使用板数方法确定20天埋葬后的土壤微生物的数量。在第20天,对照样本显示的微生物计数明显少于所有处理。通过测量芽的长度,根新鲜的重量和射击新鲜重量,研究了淀粉膜对水疗(ipomoea aquatica)生长21天的影响。发现用C/CS和C/CS/LEO膜在土壤中种植的水经过21天,显示出相似的芽长,芽新鲜重量和根重量。然而,与在C膜和对照的土壤中生长的水经短相比,它明显更高(p <0.05)。该研究得出的结论是,释放的壳聚糖会影响水流的生长。
背景COPC和AS制造的FTIR,550、700、800和900°C的碳cOPC在(a)1000至1270 cm -1,(b)1275至1475 cm -1,(b)1275至1475 cm -1,(c)2700至3100 cm -1的y-轴均值的Y-轴的均值和y-轴的均值中,y-轴的速度和y-轴的均值尺寸为y-1000 cm -1,(b)1275 cm -1,(b)1270 cm -1,(b)1270 cm -1,(b)支持的。 去除与钻石ATR带的光谱区域。 未校正(D)550、700、800和900°C的FTIR从600到3100 cm -1退火。 为了清楚起见,FTIR光谱被偏移了。背景COPC和AS制造的FTIR,550、700、800和900°C的碳cOPC在(a)1000至1270 cm -1,(b)1275至1475 cm -1,(b)1275至1475 cm -1,(c)2700至3100 cm -1的y-轴均值的Y-轴的均值和y-轴的均值中,y-轴的速度和y-轴的均值尺寸为y-1000 cm -1,(b)1275 cm -1,(b)1270 cm -1,(b)1270 cm -1,(b)支持的。去除与钻石ATR带的光谱区域。未校正(D)550、700、800和900°C的FTIR从600到3100 cm -1退火。为了清楚起见,FTIR光谱被偏移了。
在这项工作中,我们提出了一种使用傅立叶变换红外光谱法(FTIR)来确定薄超级传导膜的中红外折射率。尤其是,我们在波长范围为2.5至25 µm的波长范围内对10 nm厚的NBN和15 nm厚的MOSI膜进行了FTIR传播和反射测量,对应于12-120 THz或光子的频率50-500 MEV。To extract the mid-infrared refractive indices of the thin films from FTIR measure- ments, we used the Drude-Lorentz oscillator model to represent the dielectric functions of the films and implemented an optimization algorithm to fit these oscillator parameters, minimizing the error between the measured FTIR spectra and the simulated spectra calculated using the dielectric func- tions of the films.为了评估提取的介电函数的一致性,我们比较了从紫外线中这些介电功能到近红外波长的折射率值与使用光谱椭圆法分别测量的值。为了进一步验证,我们从其提取的Drude振荡器参数中计算出膜的薄片电阻,并与实验值进行了比较。可以扩展这种基于FTIR的折射率测量方法,以测量超过25 µm的波长的薄膜的折射率,这对于设计高效的光子探测器和光子设备非常有用,在中型和远足波长中具有增强的光学吸收。
摘要:由聚(3,3-双(3,3-双基)(四甲基甲基)用四氢呋喃)制成的热固性聚氨酯弹性体和各种多功能异氰酸酯交联,以发现一种调节机械性能的新机制。额外的氢键基序(例如氨基甲酸酯或尿素)是在交叉链接机中构建的,被证明可以从本质上确定弹性体的刚度和韧性,而两个网络的共价交联密度严格控制在同一水平上。由傅立叶转换红外光谱(FTIR),动力学机械分析(DMA)和低场核磁共振(LFNMR)(lfnmr)(lfnmr)的证据(ftir)(ftir)(lfnmr),毫不犹豫地强调和支持聚氨酯热固件的机械性能的影响和支持。■简介聚氨酯弹性体是一种重要的粘弹性材料,在一定温度范围和较大的可逆变形性下具有相对较低的弹性模量。1,2
聚合条件:溶剂:水(35毫升),压力:20 bar,发起者:硫酸钾(KPS),表面活性剂:五氟氯辛酸铵酸铵盐(APFO)(启动器浓度为10倍),速度:750 rpm; A来自GPC(DMF,40 O C,PS标准,RI检测器)(ɖ:多分散指数); b来自DSC:加热和冷却周期从30到200 O C,10 O C/min。(T M:熔化温度和T C:结晶温度); C使用以下公式从1 H NMR确定:[ʃ2.92ppm/(ʃ2.92ppm +ʃ2.26ppm)] x 100; d使用以下公式46:f(β)=aβ /(1.3aα +aβ)d ftir d;其中α和Aβ分别对应于763和840 cm -1频段的FTIR光谱中的吸收率; E来自FTIR(CM -1):α763,β840和γ1233。
摘要:在本研究中,使用eclipta alba的水叶提取物成功地生物合成了铜掺杂的氧化钴(Cuco 2 O 4)纳米颗粒,并使用各种技术进行了表征,并使用诸如UV-Vis-compophopophotementry,例如uv-vistrophotophotigry,例如紫外线分光镜,傅立叶转化的红外线图(ftir)和扫描(ftir)secormody(ftir)(ftir)(ftir)(ftir)(ftir)。 X射线(EDX)和X射线衍射(XRD)。光谱法证实了Cuco 2 O 4纳米颗粒的形成和微观技术证实了纳米颗粒的形态。通过圆盘扩散法测量合成纳米颗粒的抗菌特性。光吸收光谱显示了纳米颗粒的光学特性。使用超声速度,密度和粘度分析了纳米流体中分子相互作用的行为。计算了热力学参数,例如绝热可压缩性,自由长度和声学阻抗。索引术语 - Eclipta Alba,抗菌活性,分子相互作用,热力学参数,超声技术I.引言近年来,在医学,农业和太阳能细胞场中发挥了重要作用,已经解决了绿色纳米颗粒的使用。因此,使用生物系统制造纳米颗粒的新合成方法可以铺平基于生物医学和纳米技术的行业的有希望的途径[1-4]。出现了不同的低成本和低环境影响方法,以替代传统合成过程。最考虑的技术之一是使用生物体合成纳米颗粒。在所有生物体中,植物似乎是最好的候选者,它们适合于纳米颗粒的提高生物生产[5]。纳米颗粒由提取物合成的纳米颗粒更稳定,生产率比微生物的速度快。此外,药用植物的提取物通常被用作金属纳米颗粒生产中的稳定和还原材料[6]。金属纳米颗粒在微电子,传感器,催化和纳米技术的各个领域中找到应用。这些颗粒由于其尺寸较小,表面积,化学和光学特性以及良好的电导率而具有优势。其中,铜掺杂的氧化钴纳米颗粒(Cuco 2 O 4)在研究领域中引起了极大的兴趣,例如太阳能电池,生物柴油,光催化,去除水污染物,超级电容器,超级电容器,电催化剂等,由于其理想的特性,例如低成本,nontoxicity,nottoxicity and Notontoxitiation,nottoxicity&Nontontoxicity&Nottoxitiation and Nottoxitiation and Nottoxitiation [7]。以合成铜掺杂的氧化钴纳米颗粒的目的,使用植物Eclipta alba的水叶提取物采用了完整的绿色方法,作为有效的稳定和螯合剂。既没有使用有机/无机溶剂,也没有使用任何表面活性剂,这一事实使该过程作为环保和绿色。药用植物的界面和纳米颗粒的生物合成为广泛的生物医学应用提供了令人兴奋的机会[8]。在本研究中,我们报告了使用eclipta alba叶提取物合成铜掺杂的氧化钴纳米颗粒,并使用XRD,UV,FTIR,SEM,EDX和抗细菌研究进行了表征。在各种温度下,使用超声技术解释了制备的纳米流体的热力学特性。
纤维:纤维的类型,纤维检查的法医方面 - 光学特性,折射率,折双发性,染料分析。物理拟合和化学测试。TLC,IR-Micro光谱。 其他证据:电线,断手镯,密封,伪造的硬币,绳索/弦,绳索,合成纤维等,其引入和法医检查。 工具标记:理论,工具标记的类型及其法医检查,闭塞标记的恢复方法,印象证据 - 隔离,邮票,轮胎等,SEM,TEM,ED-XRF,X射线衍射光谱,原子力显微镜,ICP-AES,ICP-MS,ICP-MS,ICP-MS,FTIR,FTIR,MS,MS,MS,Aas,Aas,Aas。 单元TLC,IR-Micro光谱。其他证据:电线,断手镯,密封,伪造的硬币,绳索/弦,绳索,合成纤维等,其引入和法医检查。工具标记:理论,工具标记的类型及其法医检查,闭塞标记的恢复方法,印象证据 - 隔离,邮票,轮胎等,SEM,TEM,ED-XRF,X射线衍射光谱,原子力显微镜,ICP-AES,ICP-MS,ICP-MS,ICP-MS,FTIR,FTIR,MS,MS,MS,Aas,Aas,Aas。单元
我们试图识别和定量分析草酸钙(CAOX)肾结石在微米的顺序上,重点是对草酸钙一水合物(COM)和二水合物(COD)的定量鉴定。我们进行了傅立叶变换红外(FTIR)光谱,粉末X射线衍射(PXRD)和微焦点X射线计算机计算的Tomogra-Phy测量(微孔X射线CT),并比较其结果。集中于780 cm-1峰的FTIR光谱的扩展分析使得对COM/COD比率进行可靠的分析成为可能。,我们通过将微观FTIR应用于肾结石的薄部分,并通过将Microtocus X射线CT系统应用于批量样品,从而成功地分析了50-μm2区域的COM/ COD。基于微采样的PXRD测量结果,薄节的微观FTIR分析以及微孔X射线CT系统观察散装肾结石样品的结果大致一致,表明所有三种方法都可以在智力上使用。这种定量分析方法评估了保留的石头表面上的详细CAOX组成,并提供了有关石材形成过程的信息。此信息阐明了哪些晶体相核的位置,晶体的生长方式以及从亚稳态相位到稳定相的过渡如何进行。相变会影响肾结石的生长速率和硬度,因此为肾结石形成过程提供了关键的线索。