摘要 — 本文介绍了商用碳化硅 (SiC) MOSFET 器件在高漏源电压下重复性短路应力下的短路 (SC) 性能。研究了两种方案来评估栅源电压 (V GS ) 去极化和短路持续时间 (T SC ) 减少的影响。V GS 去极化可降低功率密度,并允许在增加短路持续时间 T SCmax 的情况下保持安全故障模式 (FTO:开路故障)。结果表明,SiC MOSFET V GS 去极化不会降低 T SCmax 下的短路循环能力。但是,使用 V GS 去极化可以使性能接近 IGBT 稳健性水平,在 T SC =10 µ s 下循环近 1000 次。短路测试期间芯片温度变化的模拟表明,性能下降仍然归因于短路循环期间结温 (TJ ) 的升高,这导致顶部 Al 融合,从而导致厚氧化物中出现裂纹。
摘要 - 本文提出了在高排水源电压下重复定位的SC应力下的商用硅卡比德(SIC)MOSFET设备的短路(SC)性能。研究了两种方案,以评估栅极源电压(V GS)去极化和SC持续时间(T SC)降低的影响。V GS去极化可提供功率密度的降低,并允许在短路持续时间t scmax的情况下保持安全的故障模式(FTO:失败)。结果表明,SIC MOSFET V GS去极化不会降低T SCMAX时的SC循环能力。但是,使用V GS去极化允许将近1000个周期@T SC = 10 µ s的IGBT鲁棒性水平接近IGBT鲁棒性水平。 SC测试期间芯片温度演变的模拟表明,降解归因于SC周期期间的连接温度(T J)的升高,这导致顶部Al诱导裂纹融合到厚氧化物中。
n 2024年9月17日,并于2024年9月18日,以色列,通过现在被标记为“供应链互动”(SCI)攻击,引爆了先前截获的先前截取的寻呼机和其他电子真主党使用的其他电子设备。真主党是伊朗支持的黎巴嫩民兵,已被美国政府指定为外国恐怖组织(FTO),于1982年成立,称自己为“伊斯兰抵抗以色列的领导人”,并对以色列进行了许多袭击。参见黎巴嫩真主党,国会研究局(2021年2月1日),黎巴嫩真主党(Justice.gov)(上次访问,于2024年9月23日)。除了充当武装的民兵外,真主党还担任中东地区球员,并在黎巴嫩发挥强大的影响力,无论是一个政党和准军事组织。请参阅ID。为了实施攻击,据信以色列特工在袭击之前的15年中向多种设备增加了少量的爆炸性材料,并将其传递给真主党特工,几乎同时引爆了该设备,并在一次攻击中造成了2,931人的攻击并杀死了37。
当局 – 指科索沃共和国民航局,私人飞行员执照教学设施(PPL 设施) – 按照 JAR-FCL 2.125,获得授权开展获取私人飞行员执照的专业培训的法人实体,飞行训练组织(FTO) – 获得授权开展获取飞行员执照和授权的专业培训的法人实体,JAA 成员国 – 签署关于制定、接受和实施联合航空要求的协议,该协议于 1990 年 9 月 11 日在塞浦路斯签署,联合航空当局(JAA) – 欧洲民航会议(ECAC)的附属机构,由负责为成员国颁布民航领域法规的机构代表组成,联合航空要求 - 飞行机组人员许可(JAR FC L) – 关于获取机组人员执照和授权的条件和程序的航空法规。 JAR-FCL 2 包含有关飞行机组成员(直升机飞行员)许可的规定,飞行员执照(直升机)——持有人可以根据执照中规定的授权和所持执照类型执行直升机飞行机组成员职责的文件,类型等级培训组织 (TRTO)——获得类型授权的法人实体,
首先,肥胖是遗传学问题,它在富裕国家的粮食可用性和久坐生活的条件下会更好地发展。能量平衡的控制(进气>积累>分散体)连接到相关的信号分子系统,该系统将下丘脑,脂肪细胞,肌肉组织和肾上腺相关联。到现在为止,已经在小鼠或大鼠中鉴定出了7种单基因肥胖症,但男性几乎没有同源对应。但是,可以说“常见”肥胖是多基因,即由于许多具有定量效应的基因(基因qTL-定量性状基因座)。此外,已经描述了“ common”肥胖与单核苷酸多义(SNP)之间的关系。在遗传变异中,特殊作用归因于最近鉴定的基因的多孔症,即FTO(脂肪质量和肥胖相关)。此外,众所周知,怀孕期间(尤其是在早产儿中)的限制以及过量的热量摄入量,出生后的快速蓬勃增长会导致表观疾病的重排,这将在成年早期的早期肥胖表型中引起一种主要与新代谢综合征相关的肥胖表型。
14 个月前 OBDURATE 正在护送前往俄罗斯的护航队,时速 11 海里。9 时,在右舷约 20 英尺处与后鱼雷发射管并列的位置发生了严重的水下爆炸« 爆炸使右舷大厅板在框架 9 纵梁和纵梁之间凹陷,与发动机室和齿轮室并列« 上层和下层甲板以及后油箱附近的舱壁弯曲和拉紧« 发动机室和齿轮室的轻微洪水以及后油箱到齿轮室的泄漏得到控制,右舷立柱块和压盖空间以及轴管充满了燃油« 所有右舷 H0 P 0 涡轮机脚和 L«P« 涡轮机的后脚断裂,齿轮箱也开裂。辅助机械受到冲击损坏,导致右舷主循环器和辅助循环器以及 10 Kwc 辅助发电机停止运行« 右舷立柱块变形,损坏后,左舷主发动机产生振动。电气设备受到轻微不重要的冲击损伤« 两个双联 0o5 英寸机枪支架均发生变形«
Hammond博士是德克萨斯州A&M大学工程教育与创新研究所的主任,也是工程教育学院的主席。 她还是素描识别实验室的主任,也是计算机科学与工程系的教授。 她是人口与老化中心,远程健康技术与系统中心以及数据科学研究所的成员。 Hammond是NSF,DARPA,Google,Microsoft等人的资助研究超过1300万的PI。 Hammond拥有博士学位。来自马萨诸塞州理工学院的计算机科学与FTO(金融技术选择),以及哥伦比亚大学的四个学位:人类学硕士学位,硕士 计算机科学,学士学位 数学和学士学位 在应用数学和物理学中。 Hammond建议17个UG论文,29毫秒和10博士学位。论文。 Hammond是2020年TEES教职员工奖的获得者,也是2011年Charles H. Barclay,Jr。'45教职员工奖的获得者。 Hammond已在Discovery频道和其他新闻来源出现。 Hammond致力于多样性和公平,这反映在她的出版物,研究,教学,服务和指导中。 更多,请访问http://srl.tamu.edu和http://ieei.tamu.edu。Hammond博士是德克萨斯州A&M大学工程教育与创新研究所的主任,也是工程教育学院的主席。她还是素描识别实验室的主任,也是计算机科学与工程系的教授。她是人口与老化中心,远程健康技术与系统中心以及数据科学研究所的成员。Hammond是NSF,DARPA,Google,Microsoft等人的资助研究超过1300万的PI。Hammond拥有博士学位。来自马萨诸塞州理工学院的计算机科学与FTO(金融技术选择),以及哥伦比亚大学的四个学位:人类学硕士学位,硕士计算机科学,学士学位 数学和学士学位 在应用数学和物理学中。 Hammond建议17个UG论文,29毫秒和10博士学位。论文。 Hammond是2020年TEES教职员工奖的获得者,也是2011年Charles H. Barclay,Jr。'45教职员工奖的获得者。 Hammond已在Discovery频道和其他新闻来源出现。 Hammond致力于多样性和公平,这反映在她的出版物,研究,教学,服务和指导中。 更多,请访问http://srl.tamu.edu和http://ieei.tamu.edu。计算机科学,学士学位数学和学士学位在应用数学和物理学中。Hammond建议17个UG论文,29毫秒和10博士学位。论文。Hammond是2020年TEES教职员工奖的获得者,也是2011年Charles H. Barclay,Jr。'45教职员工奖的获得者。Hammond已在Discovery频道和其他新闻来源出现。Hammond致力于多样性和公平,这反映在她的出版物,研究,教学,服务和指导中。更多,请访问http://srl.tamu.edu和http://ieei.tamu.edu。
萨拉哈丁大学理学院物理系,伊拉克Erbil 44001。doi:https://doi.org/10.47011/17.5.5.9接收到:07/06/2023;接受:20/09/2023摘要:在这项研究中,使用TICL 4作为泰坦尼亚前体的水热技术,在氟掺杂的氧化锡(FTO)底物上生长了良好的金红石TIO TIO 2纳米棒阵列。检查了水热反应(生长)时间对纳米结构制备过程中纳米结构形状和大小变化的影响。研究使用各种分析技术(例如X射线衍射(XRD),田间发射扫描电子显微镜(FESEM),拉曼光谱和UV-Vis-vissible分光光度计)研究了制备的TIO 2纳米棒的特性。通过在优化的生长温度,前体浓度和酸度等优化生长因子(例如生长温度,前体的浓度和酸度)上改变水热反应时间,从而获得了TIO 2纳米棒的不同结构,形态和光条间隙。组成仍然是金红石,尽管纳米棒的粒径和平均直径随生长时间变化。观察到吸收边缘转移到更长的波长(红移),并且随着生长时间的增加,TIO2的预测带隙减小。此外,通过拉曼光谱分析确认金红石相。
钙钛矿太阳能电池 (PSC) 因其高功率转换效率 (PCE) 和低制造成本而备受关注。人们采用了不同的方法来提高 PSC 的 PCE 和稳定性,例如成分工程 [1,2]、载流子传输层改性 [3] 和异质结构 [4]。最近,具有新颖结构的碳基单片钙钛矿太阳能电池 (mPSC) 已经成为以合理成本商业化大面积钙钛矿太阳能电池 (PSC) 最有前途的设计之一。此外,碳基设计无需使用 Spiro-OMeTAD 等空穴传输材料 (HTM)。由于制造成本也较低,因此可以开发出低成本的光伏系统。为了进一步提高性能,采用了加法工程方法。 mPSC 由四层连续层组成,如图 S1(支持信息)所示,包括玻璃/FTO/致密-TiO 2 /介孔-TiO 2 /介孔-ZrO 2 /碳。这些 mPSC 中填充有钙钛矿,从而分别充当吸光层。在这种设计中,钙钛矿同时充当空穴传输层 (HTL) 和吸收层 [5] 。为了提高 mPSC 的性能,人们探索了不同的技术,包括反溶剂优化 [6] 、后处理 [7] 和添加剂工程 [8] 。从上面提到的方法来看,添加剂工程非常有前景且易于使用,并且在众多
以化学能形式释放能量。9–16 该领域最新发展的一个例子是 Yangen 等人设计的 SRFB,它使用 I3/I 和 Br/Br3 作为氧化还原活性对。17 SRFB 由 WO3 装饰的 BiVO4 光阳极驱动,可提供 1.25% 的太阳能到输出能量转换效率。Yan 等人报道了一种由 Li2WO4/LiI 氧化还原对和染料敏化 TiO2 光电极组成的 SRFB,在放电密度为 0.075 mA cm2 时可实现 0.0195 mA h mL1 的电池容量。1 最近,Amirreza 等人构建了一个串联结构,其中有一个裸露的赤铁矿光阳极和两个串联的染料敏化太阳能电池; 2仅使用赤铁矿作为光阳极的AQDS(蒽醌-2,7-二磺酸盐)/碘化物SRFB从太阳能到化学能的转化效率约为0.1%。全钒氧化还原流电池,包括钒基SRFB,由于其高可逆性和快速的反应动力学,在世界范围内得到了广泛的研究和开发。3 – 6郝等人将氮掺杂的TiO 2光阳极应用于微流体全钒光电化学电池,平均光电流密度为0.1 mA cm 2。7Zi等人。展示了一种 AQDS/V 4+ SRFB,它使用负载在氟掺杂氧化锡 (FTO) 上的 TiO 2 纳米粒子作为光阳极,能够产生 0.14 mA cm 2 的相对稳定的光电流。8