使用化学浴沉积合成 ZnO 薄膜并研究物理化学性质 Pooja B.更多,1 Sanjay B. Bansode,1 Mariya Aleksandrova,2 Sandesh R. Jadkar 1 和 Habib M. Pathan 1,* 摘要 在目前的研究中,我们在 70°C 温度下通过化学浴沉积法 (CBD) 在 FTO(氟掺杂氧化锡)基板上合成了 ZnO 薄膜。X 射线衍射研究表明,ZnO 薄膜具有六方纤锌矿结构,沿 (002) 方向有纹理。此外,扫描电子显微镜证实了沿垂直(c 轴)方向取向的微米级棒的形成。此外,还检查了各种光学和光电化学 (PEC) 特性。从紫外-紫外光谱分析可知,ZnO 薄膜的光学带隙为 3.1 eV。光致发光光谱显示,沉积的薄膜在紫外区具有尖锐的发射,在可见光区具有宽发射,这可能与 ZnO 中的缺陷有关。电化学阻抗谱表明,在光照下,ZnO 薄膜表现出较高的光电流密度的 PEC 性能。计时电流法显示,光电流密度随时间变化的稳定性测试为 60 μA/cm 2 。此外,莫特-肖特基曲线证实,沉积的 ZnO 薄膜为 n 型,载流子密度为 8.55×10 18 cm -3 。
前列腺癌 (PCa) 是男性中第二常见的癌症。虽然根治性前列腺切除术和放射疗法通常可以成功治疗局部疾病,但治疗后复发很常见。由于雄激素受体 (AR) 和雄激素在前列腺癌变和进展中起着至关重要的作用,因此雄激素剥夺疗法 (ADT) 通常用于剥夺 PCa 细胞的雄激素促增殖作用。ADT 通过阻断雄激素生物合成(例如阿比特龙)或阻断 AR 功能(例如比卡鲁胺、恩杂鲁胺、阿帕鲁胺、达洛他胺)起作用。ADT 通常在最初抑制 PCa 生长和进展方面有效,但 ADT 后出现去势抵抗性 PCa 和进展为神经内分泌样 PCa 是主要的临床挑战。因此,迫切需要找到调节雄激素信号的新方法,以阻止 PCa 进展,同时防止或延迟治疗抵抗。雄激素和表观转录组信号传导的机制融合为治疗 PCa 提供了一种潜在的新方法。表观转录组涉及 mRNA 的共价修饰,特别是在本综述中提到的 N(6)-甲基腺苷 (m 6 A) 修饰。m 6 A 参与调节 mRNA 剪接、稳定性和翻译,最近已被证明在 PCa 和雄激素信号传导中发挥作用。m 6 A 修饰受含 METTL3 的甲基转移酶复合物以及 FTO 和 ALKBH5 RNA 去甲基化酶的动态调节。鉴于需要新的方法来治疗 PCa,人们对针对调节 AR 表达和雄激素信号传导的 m 6 A 的新疗法产生了浓厚的兴趣。本综述严格总结了此类表观转录组疗法对 PCa 患者的潜在益处。
根据2002年《国土安全法》,“恐怖主义”被定义为任何活动:涉及一项对人类生命危险或可能破坏关键基础设施或关键资源的行为;并且违反了美国或美国任何州或其他分区的刑法;似乎是为了:恐吓或胁迫平民;通过恐吓或胁迫影响政府的政策;或通过大规模破坏,暗杀或绑架来影响政府的行为。参见6USC§101(18)。3联邦调查局将“本土暴力极端主义者”(HVE)定义为“在美国或其领土上生活和/或经营的任何公民身份的个人,他们倡导,倡导,正在从事或准备从事意识形态动机的恐怖活动或社会恐怖组织的恐怖恐怖组织,以异国的恐怖组织为方向进行独立的恐怖组织('对联邦调查局的监督,在S. Comm之前听证会。司法机构,第118次。(2023)(Christopher A. Wray的证词,Dir。喂养。调查局)。4联邦调查局一直评估HVE是对美国祖国最伟大,最直接的国际恐怖主义威胁。5例如,美国有许多以前的FTO启发式撞击袭击,2017年10月,一辆HVE将一辆被租用的卡车驶向纽约曼哈顿的一辆自行车道和行人走道,杀死了八人,炸伤了12人。HVE被定罪并于2023年5月在监狱中判处无期徒刑。HVE响应ISIS领导人的呼吁进行了攻击。在2016年11月,一辆HVE将车辆驶入了俄亥俄州俄亥俄州哥伦布的俄亥俄州立大学校园的一群行人。考虑到易于获取车辆的便利性以及进行攻击所需的最低技能,FBI,DHS和国家反恐中心已警告说。
人类生命的快速发展会影响不断增长的能源需求以及寻找可持续替代能源的创新需求。已经开发的创新之一是太阳能电池技术,可以将阳光转化为电能。然而,通常使用的透明底物或电极的高生产成本,例如FTO(氧化氟锡)和ITO(Indium Tin氧化物)是主要障碍。因此,本研究探讨了将图形氧化物用作太阳能电池制造中的替代半导体材料。玉米棒含有碳化合物,可以用作图形氧化物生物量的来源,用作纳米复合材料Fe 3 O 4-图形氧化物。这项研究的目的是确定组合物变化对使用悍马修饰方法从玉米棒的基本成分合成的纳米复合fe 3 O 4-纳米复合氧化物的光学特性的特性的影响。使用UV-VIS测量吸光度,透射率,反射率和间隙能量,成分变化为40%:60%,30%:70%和20%:80%的结果。在混合物中,获得的带的能量值随着磁铁矿(Fe₃o₄)的增加而降低,这表明纳米复合fe fe₃o ox -图形氧化物是半导体,值为3.39 eV(40%:60%),3.62 ev(3.62 ev(30%:70%:70%)和3.94 EV(3.94 EV(20%):80%:80%:80%:80%:80%:80%:80%:80%:80%:80%:80%:80%:80%:80%:80%:80%:80%:80%:80%:80%:80%。关键字:玉米棒,纳米复合fe 3 o 4-氧化物图形,光学特性,紫外线 - vis,间隙能量
在染料敏化的太阳能电池中,金属复合物,无金属和天然光敏剂的概述Sharad A. Mahadik,1 Habib M. Pathan 2和Sunita Salunke-Gawali 1,*摘要在染料敏化的太阳能电池(DSSCS)中显示了很多兴趣,以使能量源可转换。本评论探讨了DSSC中的最新发展,强调了使用的各种光敏剂。金属络合物,无金属,新颖的萘酮光敏剂和自然光敏剂都涵盖了讨论;每个都有独特的品质和优势,有助于提高DSSC的有效性。在DSSC中,金属复合物对于改善电荷分离和光吸收至关重要。金属配合物的复杂配位化学允许对其光学和电气特性进行自定义控制,从而增强了它们在太阳能电池中的性能。基于钌的光敏剂表现出较高的稳定性,有效的自然可见阳光和出色的氧化还原特性。相比之下,有机和无金属的光敏剂变得越来越流行,因为它们便宜且对环境更好。对无金属替代品的搜索创造了开发可扩展且可持续的太阳能电池技术的机会。天然光敏剂为DSSC技术提供了可再生且环保的方法,因为它们具有出色的轻度收获特性和生物相容性。光敏剂,电解质,反电极和光阳极在DSSC机制中错综复杂。本综述提供了DSSC的工作原理,重点介绍了研究和开发方面的最新进步和挑战。电解质,反电极,导电透明的底物,例如氟掺杂的氧化锡(SNO 2:F,FTO)和indium-tin-氧化物(在2 O 3:SN,ITO中),金属氧化物半导膜包括在此综述中。因此,在此,我们讨论了DSSC的组成部分以及光敏剂的优势和缺点。全面的评论旨在为当今的DSSC的状况提供完整的图片,强调使用各种光敏剂的进步,并阐明指导其功能的复杂机制。本文的见解支持继续尝试创建可持续有效的太阳能转换技术。
1. 引言 近年来,由于钙钛矿太阳能电池成本低、效率高、制备简单等特点,吸引了众多研究人员的关注。自从 2009 年 Miyasaka 等人首次报道以来,钙钛矿太阳能电池 (PSC) 技术已经从 3.8% 提升至 25% 左右 [1,2]。基本的钙钛矿太阳能电池由透明导电层(例如氟掺杂氧化锡 (FTO) 或铟掺杂氧化锡 (ITO)、电子传输层、光敏钙钛矿层、空穴传输层以及金属电极)组成。由于电子传输层适用于所有层,因此它对于 PSC 的高效率起着重要作用。TiO 2 是最常用的电子传输层之一,因为它具有多种制备方法,例如旋涂、喷涂、溅射等 [3–5]。除了制备技术之外,TiO 2 结构还存在一些问题,例如氧空位和非化学计量缺陷,尤其是位于 TiO 2 表面的缺陷 [6,7]。这些缺陷阻碍电子流动,导致钙钛矿太阳能电池性能不佳。一些研究人员报道了一些不同的材料如 SnO 2 、 ZnO、CdS 和 WOx 代替 TiO 2 作为电子传输层 [8–11]。尽管 CdS 作为电子传输层还远远不能令人满意,但它可能是改性和钝化 TiO 2 表面的优异界面材料。最近,Hwang 等人报道 CdS 作为介孔 TiO 2 层的改性材料,可提高钙钛矿太阳能电池的稳定性 [12]。Zhao 等人使用 CdS 作为前体溶液的添加剂,观察到复合显著减少 [13]。Dong 等人使用 CdS 作为电子传输层,观察到 PSC 的效率为 16.5% [14]。Wessendorf 等人通过使用 CdS 作为电子传输层,观察到磁滞减小 [15]。Cd 扩散到钙钛矿层导致晶粒尺寸增加,从而提高效率 [16]。Mohamadkhania 等人使用 SnO 2 表面上的 CdS 作为界面改性剂,观察到磁滞减小和效率提高 [17]。Ma 等人表明,在 TiO 2 表面化学沉积 CdS 可将效率从 10.31% 提高到 14.26% [18]。
1。最近,由于其低成本,高效率和便捷的制造,钙钛矿太阳能电池对许多研究人员变得更具吸引力。自从宫宫和同事于2009年首次报道以来,钙钛矿太阳能电池(PSC)技术已从3.8%提高到25%左右[1,2]。基本的钙钛矿太阳能电池由透明的导电层组成,例如弗洛林掺杂锡氧化物(FTO)或imper的掺杂锡氧化物(ITO),电子传输层,光敏的钙钛矿层,孔传输层,最后是金属电极。由于对所有层都是有效的,因此电子传输层对于高效率在PSC中起重要作用。tio 2是最常用的电子传输层之一,其各种制造方法(例如自旋涂层,喷涂,溅射等)。[3-5]。独立于制备技术,TIO 2结构包括一些问题,例如氧气空位和尤其位于TIO 2表面上的非化色缺陷[6,7]。那些缺陷可以防止电子流,从而导致钙钛矿太阳能电池性能不佳。一些研究人员报告了一些不同的材料,例如SNO 2,ZnO,CDS和WOX,而不是TIO 2作为电子传输层[8-11]。尽管CD作为电子传输层仍然远非令人满意,但它可能是用于修饰和钝化TIO 2表面的出色界面材料。最近,Hwang等。报道CD作为中孔TIO 2层的修饰材料,导致钙钛矿太阳能电池的稳定性提高[12]。Zhao等。 Dong等。Zhao等。Dong等。Dong等。使用CD作为前体溶液的添加剂,并观察到重组显着降低[13]。使用CD作为电子传输层,观察到PSC的效率为16.5%[14]。Wessendorf等。通过使用CD作为电子传输层[15]观察到滞后的减少。CD扩散到钙钛矿层会导致晶粒尺寸增加,从而提高效率[16]。 Mohamadkhania等。 使用SNO 2表面上的CD作为接口修饰符,观察到滞后降低并提高效率[17]。 ma等。 表明,在TIO 2表面上化学沉积的CD可将效率从10.31%提高到14.26%[18]。CD扩散到钙钛矿层会导致晶粒尺寸增加,从而提高效率[16]。Mohamadkhania等。 使用SNO 2表面上的CD作为接口修饰符,观察到滞后降低并提高效率[17]。 ma等。 表明,在TIO 2表面上化学沉积的CD可将效率从10.31%提高到14.26%[18]。Mohamadkhania等。使用SNO 2表面上的CD作为接口修饰符,观察到滞后降低并提高效率[17]。ma等。表明,在TIO 2表面上化学沉积的CD可将效率从10.31%提高到14.26%[18]。
CRISPR/Cas 系统,特别是 CRISPR/Cas9(Jinek 等人,2012;Cong 等人,2013),已被开发为一个强大而多功能的平台,用于操作各种物种的基因组。近年来,许多报告表明其在人类基因治疗和生命科学研究以及动植物育种方面具有强大的潜在应用。本研究主题“精准基因组编辑技术和应用”中的集合可能就是明证。通常,CRISPR/Cas9 核酸酶用于切割目标基因组 DNA 以产生位点特异性双链断裂 (DSB),主要通过非同源末端连接 (NHEJ) 修复,或在较小程度上通过同源定向修复 (HDR) 修复。经典的 NHEJ 修复途径可产生小的插入或缺失 (indel),通过在开放阅读框 (ORF) 中引入移码导致目标编码基因的功能丧失。NHEJ 诱变是一种非常流行的基因操作策略。除了经典的 NHEJ 之外,替代或准确的 NHEJ 介导的修复可以实现精确的基因组 DNA 缺失(Guo et al., 2018; Shou et al., 2018)。Chao 等人和 Zhao 等人在本研究主题中的两篇论文分别描述了等位基因特异性敲除和双基因敲除小鼠模型的制造,用于快速疾病基因验证和人类异种移植研究。N6-甲基腺苷 (m6A) 是一种成熟的真核 mRNA 表观遗传修饰。越来越多的研究发现了 m6A 甲基化的意义,这催生了“表观转录组学”这一新兴领域。本卷中的另一篇文章( Huang 等人)描述了小鼠精原细胞 GC-1 细胞中脂肪质量和肥胖相关( Fto )基因的敲除研究,该基因已被证明作为 m6A 去甲基化酶作用于表观转录组( Li 等人,2017 年; Lin 等人,2017 年)。另一方面,HDR 修复途径依赖于同源供体 DNA 在 DSB 位点产生靶向基因敲入或在两个 DSB 位点之间产生基因替换。精确的点突变和设计的小插入/缺失也可以通过这种方法实现。本专题中的一篇论文介绍了利用CRISPR/Cas9介导的HDR在人诱导性多能干细胞(iPSC)中精准校正Rett综合征(RTT)中甲基-CpG结合蛋白2(MECP2)基因的努力。该报道为基于iPSC的疾病建模和基因校正治疗提供了参考(Le等)。虽然基于HDR的基因组可以实现基因插入和精准替换,但在精准编辑过程中仍面临一些缺点,包括HDR效率低、双等位基因靶向失败、正向选择的复杂性以及选择标记的重新删除。
如今,鉴于人类面临的主要问题,日益严重的环境污染和对可持续廉价能源的需求代表了重要的研究问题。因此,设计和开发能够集成到高效的环境处理和能源生产产品/技术中的先进材料是全世界不断研究的课题。在这种情况下,光催化材料被认为是主要用于水处理的有吸引力的候选材料,但也用于通过光电解水分解生产氢气。光催化技术利用光能作为驱动力,在光催化材料的存在下,通过矿化从(废)水中去除持久性有机污染物(例如染料、农药和药物)。具有光催化活性的材料种类繁多,例如半导体(金属氧化物、金属硫化物/硒化物等)、半导体基异质结(微/纳复合结构、二元或三元混合结构等)、钙钛矿、过渡金属尖晶石型混合氧化物、金属有机骨架(MOF)、水凝胶和废物衍生或模板材料。因此,本期主题主要指开发创新、先进和可操作的光催化技术,这些技术使用新的高效、环保、可持续和可重复使用的光催化材料。本期包括八篇文章,重点介绍先进的光催化材料在水处理和通过水分解反应制氢中的应用。以下是本期论文的简要摘要,考虑到光催化过程中使用的材料类型:金属氧化物(单组分、双组分或三组分混合结构)、钙钛矿和石墨相氮化碳(gC 3 N 4 )基半导体。总共八篇文章中,有三篇 [ 1 – 3 ] 重点介绍了 TiO 2 基光催化剂,因为 TiO 2 已被广泛研究,是一种具有相对较高的光催化活性和优异的化学稳定性的低成本环境友好型材料。在参考文献 [ 1 ] 中,使用刮刀技术在三种不同的基材上沉积 TiO 2 (Degussa P25) 薄膜:显微玻璃 (G)、掺杂氟的氧化锡 (FTO) 和铝 (Al)。在 UV-A、UV-B + C 和 VIS 辐照(七种场景)下,对两种污染物酒石黄 (Tr) 染料和啶虫脒 (Apd) 杀虫剂测试了样品的光催化性能,辐照时间为 8 小时。为了优化光催化效率,研究了几个参数(照射源、总辐照度值、光子通量、催化剂基材和污染物类型)的影响。结果表明,在导电(Al)基底上制备的样品,使用三个 UV-A 和一个 VIS 光源(13.5 W/m 2)的混合光源,可以获得更高的光催化效率(Tr 为 63.8%,Apd 为 82.3%)。在参考文献 [ 2 ] 中,作者报道了一种新型 Ba(II)/TiO 2 –MCM-41 复合材料,该复合材料使用掺杂 Ba 2+ 的 TiO 2 分散在 MCM-41 分子筛上。在紫外光照射(60 分钟)下,Ba(II)/TiO 2 –MCM-41 (91.7%) 在降解对硝基苯甲酸 (4 × 10 − 4 M) 时的光催化效率增强,这被认为是由于 Ba 2+ 离子和 MCM-41 的存在,这有助于降低带隙能量并促进 TiO 2 的轻松分散,从而形成一种表面积为
研究Masnbr 3吸收层厚度对FTO /TIO 2 /MASNBR 3 /CUI PEROVSKITE太阳能电池特征T. A. Mohammed A,M。W. Aziz A,M。W. Aziz A,H。W. Hamed A,J。M. Rzaij B,kirkik of Scorecation of Kirkuk,Irab by of Irab kirkuk,Irab by irab be a irab by a irab beir,irab beirike for a i rak kir kirkik b。伊拉克拉马迪(Ramadi)这项工作包括设计一个太阳能电池,其中含有氟含氟锡的氧化锡,二氧化钛,甲基铵锡锡溴和杯状碘化物。研究了从0.2μm到2.5μm的吸收层厚度对发达的PSC性能的影响。最佳性能的吸收层的厚度为0.2μm。合成太阳能电池提供的开路电压为1.07 V,短路电流为34.356 mA/cm 2,效率为30.68%,最佳厚度为0.2μm的填充系数为83.404。与传统同行相比,发现了开发的PSC的成本效益,环境可持续性的提高和鲁棒性。(2024年2月16日收到; 2024年5月3日接受)关键词:钙钛矿,太阳能电池,SCAPS-1D,效率,填充因子,量子效率1。简介地球收到了大量的太阳能,太阳提供了足够的能量,以满足全年的全球能源需求。此外,每天的太阳辐射都超过了世界人口的总能源消耗。太阳能到达地球三天等同于所有已知的化石燃料来源中存储的能量。Park等。 在2017年,Anwar等人。Park等。在2017年,Anwar等人。太阳能自由使用,代表了一种有希望的和可持续的资源。实用太阳能电池技术的创建可以追溯到30年来。随着时间的推移,太阳能电池的效率和寿命显着改善,尤其是随着晶体管和半导体技术的进步。光伏技术将光能转化为电流,它是全球最具前瞻性的可再生能源形式之一[1-3]。太阳能电池通过将光(无论是从阳光还是人工来源)转化为电能来发挥作用。正在进行的发展旨在产生具有成本效益,用户友好,高效且耐用的太阳能电池,通常称为稳定的太阳能电池。钙钛矿太阳能电池是一种具有钙钛矿结构化合物的一类太阳能电池,引起了人们的注意。这种化合物通常是有机无机杂种或主要基于铅的卤化物材料,是能量收集的活动层。值得注意的钙钛矿材料包括铅甲基铵和铅卤化物,以其成本效益和制造方面的简单性而闻名。钙钛矿太阳能电池技术的进步已显着提高效率,归因于内部结构修改,从2009年的3.8%上升到2018年底的22.7%[4]。探索非铅替代方案的探索导致在创建钙钛矿太阳能电池中研究了金属卤化物,例如SB,AG,SN,CU,GE和BI。采用相同的原理成功开发了该细胞,并达到了6.5%的能量转换效率[6]。具体而言,含有金属卤化物(例如Ch 3 nh 3 snbr 3)的钙钛矿由于其理想的带隙为1.3 eV而成为非铅钙钛矿太阳能电池的有前途的候选者。当我们努力向更清洁和更可再生能源过渡时,这些发展强调了可持续和有效的太阳能技术的潜力[5]。研究了一个具有多型钙钛矿吸收层的太阳能电池,他们发现效率为20.21%,20.23%和18.34%[7]。在2018年,Muniandy等人。使用不同类型的