摘要 - 本文重点介绍了在短路条件下SIC MOSFET的鲁棒性水平的提高。在这项研究中,提出了两种允许在短电路操作下在平面电源MOSFET设备中确保安全的“失败”(FTO)模式的方法。这些方法基于栅极源电压的直接去极化及其根据FTO和经典不安全热失控之间的临界消散功率(W/mm²)的计算进行估计。他们允许确定门源电压的最大值,以在接近名义值的排水源电压下保留FTO模式。引入了FTO和“ Fafto-Short”(FTS)之间功率密度的边界。对竞争中的两种故障模式进行了完整的实验,该实验可能出现在1.2 kV SIC MOSFET的短路测试(SC)测试中。最后,研究了栅极源电压去极化对国家电阻(R DS(ON))的惩罚,以评估技术效率。
摘要 - 本文重点介绍了在短路条件下SIC MOSFET的鲁棒性水平的提高。在这项研究中,提出了两种允许在短电路操作下在平面电源MOSFET设备中确保安全的“失败”(FTO)模式的方法。这些方法基于栅极源电压的直接去极化及其根据FTO和经典不安全热失控之间的临界消散功率(W/mm²)的计算进行估计。他们允许确定门源电压的最大值,以在接近名义值的排水源电压下保留FTO模式。引入了FTO和“ Fafto-Short”(FTS)之间功率密度的边界。对竞争中的两种故障模式进行了完整的实验,该实验可能出现在1.2 kV SIC MOSFET的短路测试(SC)测试中。最后,研究了栅极源电压去极化对国家电阻(R DS(ON))的惩罚,以评估技术效率。
扩展Data_fig1.tif a,X射线吸收在Fe K-边缘(左)的边缘结构附近(XANES)和VC-NFMO的Mn K-EDGE(右),在不同的电荷/放电状态下收集; Fe 2+ /Fe 3+和Mn 2+ /Mn 3+ /Mn 4+标准光谱显示在底部以进行比较。b,在不同的电荷/放电状态下收集的VC-NFMO的Fe K-EDGE(左)和Mn K-EDGE(右)EXAFS光谱的傅立叶变换(fts)。光谱已被抵消以确保可见性,并且在OCV状态中收集的EXAFS光谱(Fe和Mn)也已被抵消并叠加为灰色虚线以进行比较。c,在各种电荷/放电状态下的VF-NFMO(灰色)和VC-NFMO(蓝色)的氧化还原态分析。平均边缘位置由积分方法拟合。Fe k-edge(Top)和Mn K-边缘(底部)边缘位置直接适用于相应的Xanes边缘区域,补充图18和(a)。d,
地球同步成像傅里叶变换光谱仪 (GIFTS) 是为 NASA 新千年计划 (NMP) 地球观测-3 (EO-3) 任务开发的。本文讨论了 GIFTS 测量要求以及 GIFTS 传感器为提供所需的系统性能而使用的技术。还介绍了最近完成的仪器校准的初步结果。GIFTS NMP 任务挑战是展示新兴的传感器和数据处理技术,以使用大气成像和高光谱探测方法彻底提高气象观测能力和预报准确性。GIFTS 传感器是一种具有可编程光谱分辨率和空间场景选择的成像 FTS,允许近实时地交换辐射测量精度和大气探测精度以达到区域覆盖。通过使用低温迈克尔逊干涉仪和两个大面积红外焦平面探测器阵列实现系统灵敏度。由于资金限制,GIFTS 传感器模块作为工程演示单元完成,可以升级以获得飞行资格。通过热真空测试和严格的红外校准活动,已成功证明满足下一代地球同步探测要求的能力。
在其付款请求中,葡萄牙确认与以前令人满意的里程碑和目标有关的措施尚未逆转。然而,委员会确定了实施前安特跨核对的缺陷,以在Milestone 22.2的要求上对可靠数据库进行双重资金,这是对在第三和第4季度在Q1 2024中执行的第三和第4期中包括的里程碑和目标的审计期间的审计。在此基础上,委员会认为发生了逆转,但此后由当局的行动解决,因为葡萄牙当局已提供了进一步的证据,以与Arachne/fts数据库结合使用新工具中的跨核对群中的随后应用。在这方面,委员会认为里程碑22.2目前是令人满意的。对于其他里程碑和目标,委员会没有证据表明发生了逆转。收到付款请求后,委员会已经以初步的基础评估了相关里程碑和目标的令人满意的实现。基于葡萄牙提供的信息,委员会对所有42个里程碑和目标的满意实现进行了积极的初步评估。
I。常规的台式光谱仪通常很大,并且仅限于实验室环境。随着综合光子学的发展,光谱仪的微型化导致了适用于实验室以外的更多应用,包括农业分析和水下研究[1],[2]。它还可以启用实验室芯片应用程序[3],[4],[5]。基于其工作原理,可以将集成光谱仪大致分为使用分散,窄带滤波,傅立叶变换或数值重建的类别[6]。第一个类别具有分散光学元件,它们在空间上分开不同的频率,包括echelle光栅[7]和阵列的波导格栅(AWG)[8],[9]。第二种类型使用窄带过滤器(例如环形分解器和马赫Zehnder干涉仪(MZI)[10],[11],[11],[12],选择性地将不同的光谱成分传输到不同的检测器。第三个通常称为傅立叶变换型体镜检查(FTS),其中通过在时间或空间域中转换干涉信息,使用傅立叶变形[13],[14],[15]获得频谱。最后一个类别采用了一系列具有不同光谱响应的组件,并从组合信号[16],[17]中重建光谱。它依赖于
11 第 3 节 • 更新了表 3.1.1-1:气体调节能力 • 更新了表 3.1.2.1-1 至 3.1.2.1-6:C 波段、S 波段和 FTS 特性 • 更新了图 3.1.2.1-1 400 系列 E 场辐射 • 增加了图 3.1.2.1-2 500 系列 E 场辐射 • 更新了第 3.1.2.3 节发射范围电磁环境 • 更新了图表 3.1.2.3-1 至 -4 最坏情况射频环境 • 更新了图 3.1.2.4-1 E 场对 LV 的冲击 • 第 3.1.2.5.1 节:Centaur 非导电材料包括先前版本的 Centaur 隔热毯和有效载荷整流罩 ESD 部分。• 更新了图 3.1.2.5.2-1:Centaur 上因 ESD 引起的峰值宽带电场发射 • 删除了图 3.1.2.5.2-2 MIL-STD-1541A 电弧放电宽带电场发射 • 将图 3.1.2.5.1-1、3.1.2.5.2-1 和 3.1.2.5.2-2 合并为新的图 3.1.2.5.1-1 Centaur 上的电场发射 • 更新了第 3.2.1 节航天器设计载荷系数 • 更新了第 3.2.2 节声学 • 更新了第 3.2.3 节振动 • 更新了第 3.2.4 节冲击 • 删除了图 3.2.5-1 FMH 通量分布 • 添加了第 3.2.6.1 节静压环境设计注意事项 • 更新了图 3.2.7.7-1 CCAM • 增加了表 3.3-2 SC 结构测试
无人机系统的权宜性分析 D. Hůlek 1 , M. Novák 2 1 布拉格捷克技术大学,交通科学学院,航空运输系,Horská 3, 128 03, Prague 2, Czech Republic,电子邮件:hulekdav@fd.cvut.cz 2 帕尔杜比采大学,交通工程学院,交通管理、营销和物流系,Studentská 95, 532 10 Pardubice, Czech Republic,电子邮件:novak@upce.cz 摘要 本文的目的是介绍由布拉格 FTS 的 CTU 航空运输系员工创建的无人机系统的权宜性分析。权宜性分析的原则是确定无人系统的使用是否适合某项活动。将无人系统与有人驾驶飞机和不使用任何飞行器进行比较。从安全、环境(包括社会学)和财务角度对无人机系统进行了比较。第一部分是关于无人机系统领域的现状和上述三个观点。下一部分描述了用于分析创建的最重要的研究方法。本文的第三部分描述了权宜之计分析本身及其创建。本文的最后一部分对分析进行了验证及其总体评估。关键词:UAS、UA、UAV、RPAS、RPA、无人机、权宜之计分析、权宜之计、UAV 适用性 1。介绍
无人机系统的权宜之计分析 D. Hůlek 1、M. Novák 2 1 布拉格捷克技术大学,交通科学学院,航空运输系,Horská 3, 128 03,布拉格 2,捷克共和国,电子邮件:hulekdav@fd.cvut.cz 2 帕尔杜比采大学,交通工程学院,交通管理、营销和物流系,Studentská 95,532 10 帕尔杜比采,捷克共和国,电子邮件:novak@upce.cz 摘要 本文的目的是介绍由布拉格 FTS 航空运输系 CTU 员工创建的无人机系统的权宜之计分析。权宜之计的原则是确定无人系统的使用是否适合某项活动。将无人系统与有人驾驶飞机的使用和不使用任何飞行器进行了比较。从安全、环境(包括社会学)和财务角度对无人机系统进行了比较。第一部分介绍了无人机系统领域的现状和上述三个观点。下一部分描述了用于分析创建的最重要的研究方法。本文的第三部分描述了权宜性分析本身及其创建。本文的最后一部分对分析进行了验证并进行了总体评估。关键词:UAS、UA、UAV、RPAS、RPA、无人机、权宜性分析、权宜性、UAV 适用性 1. 简介
无人机系统的权宜之计分析 D. Hůlek 1、M. Novák 2 1 布拉格捷克技术大学,交通科学学院,航空运输系,Horská 3, 128 03,布拉格 2,捷克共和国,电子邮件:hulekdav@fd.cvut.cz 2 帕尔杜比采大学,交通工程学院,交通管理、营销和物流系,Studentská 95,532 10 帕尔杜比采,捷克共和国,电子邮件:novak@upce.cz 摘要 本文的目的是介绍由布拉格 FTS 航空运输系 CTU 员工创建的无人机系统的权宜之计分析。权宜之计的原则是确定无人系统的使用是否适合某项活动。将无人系统与有人驾驶飞机的使用和不使用任何飞行器进行了比较。从安全、环境(包括社会学)和财务角度对无人机系统进行了比较。第一部分介绍了无人机系统领域的现状和上述三个观点。下一部分描述了用于分析创建的最重要的研究方法。本文的第三部分描述了权宜性分析本身及其创建。本文的最后一部分对分析进行了验证并进行了总体评估。关键词:UAS、UA、UAV、RPAS、RPA、无人机、权宜性分析、权宜性、UAV 适用性 1. 简介