信息融合的主要目标可以看作是利用信息的多样性来改善决策。信息融合的研究领域可以分为两个部分:低级信息融合和高级信息融合。迄今为止,大多数研究都涉及较低层次,例如信号处理和多传感器数据融合,而高级信息融合(例如实体聚类)则相对未知。高级信息融合旨在提供与情况相关的决策支持(人工或自动)。基于此类支持的决策的一个关键问题是信任,定义为“可接受的依赖性”,其中依赖性或可靠性是其他概念(例如可靠性)的总称。高级信息融合中的可靠性要求是指信念度量和与情况相关的假设的属性。尽管满足此类要求被认为是基于融合的决策中信任的先决条件,但解决此问题的高级信息融合研究却很少。由于高级信息融合的大部分研究都与国防应用有关,因此另一个重要问题是概括现有的术语、方法和算法,以便其他领域的研究人员更容易采用这些结果。本报告认为需要对这些问题进行更多研究,并提出了一系列未来研究的研究问题
摘要 — 为了实现长期自主导航中稳健、无漂移的姿态估计,我们在本文中提出了一种将全局位置信息与视觉和惯性测量融合在一起的方法,该方法是基于紧耦合非线性优化的估计器。与以前的松散耦合研究不同,使用紧耦合方法可以利用所有测量之间的相关性。通过最小化包括视觉重新投影误差、相对惯性误差和全局位置残差的成本函数来估计最新系统状态的滑动窗口。我们使用 IMU 预积分来制定惯性残差,并利用这种算法的结果来有效地计算全局位置残差。实验结果表明,所提出的方法实现了准确且全局一致的估计,优化计算成本的增加可以忽略不计。我们的方法始终优于松耦合融合方法。与室外无人机 (UAV) 飞行中的松耦合方法相比,平均位置误差降低了 50%,其中全局位置信息由嘈杂的 GPS 测量提供。据我们所知,这是第一项在基于优化的视觉惯性里程计算法中紧密融合全局位置测量的工作,利用 IMU 预积分方法定义全局位置因子。
本文研究了使用无线传感器网络 (WSN) 进行多个瞬态发射器 (目标) 定位的问题。一个特定的应用是利用安装在士兵组上的声学枪声检测系统网络来定位战场上的对手 [16][17]。假设目标在感兴趣的时间窗口内是静止的,但目标数量未知。传感器可以通过检测目标发射的声学信号来测量目标的视线 (LOS) 角,并记录检测到的信号的到达时间 (TOA)。这意味着任何单个传感器的目标位置可观测性都不完整。由于传感器的不完善,存在漏检和误报。此外,测量结果与目标之间的关联是未知的,也就是说,每个传感器都不知道特定测量结果来自哪个目标(或杂波)。在估计任何目标的位置之前,必须关联所有传感器的测量结果。因此,数据关联的质量对整体定位性能至关重要。我们之前的工作 [13] 中开发的两种不同的融合算法使用集中式方法解决了这个问题,即我们假设有一个融合中心直接或通过多跳中继(通常通过无线通信)从各个传感器收集所有信息。集中访问所有信息可能很困难。例如,在覆盖大面积的应用中,需要高传输功率才能将信息从单个传感器直接传送到融合中心。此外,基于融合中心的方法不够稳健,也就是说,如果融合中心发生故障,整个系统都会发生故障。这促使人们开展大量关于分布式融合或分布式优化算法的研究,包括本文中提出的算法。一种直接的分布式解决方案是泛洪,即通过网络中的链路广播实际的传感器测量值。在 [7] 中,提出了一种广播新测量值的通信策略,以允许分布式测量融合,对于线性动态系统,在给定所有接收到的测量值的情况下,在每个节点产生最佳估计。对于本文考虑的定位问题,有一个非线性静态系统。该方法需要大量的数据通信、存储内存和簿记开销。泛洪方法仍然适用,通过仔细记账和多次迭代信息交换,每个传感器将拥有所有信息,并可以充当融合中心,以找到与集中式方法相同的全局解决方案。例如,它需要大约 S(传感器数量)乘以基于平均共识(AC)的方法的内存存储。
摘要 要达到设计性能所需的材料需要能够提供金属、陶瓷和金属陶瓷化学成分的配方和加工方法,这些成分必须在源头进行精细调整,并能耐受下游的热机械调整。研究人员不断利用计算热力学模型和改进的热机械处理技术开发结构钢和金属陶瓷,目前正在评估基于 8%–16% wt.% Cr 的氧化物弥散强化钢 (ODS) 还原活化铁素体-马氏体钢 (RAFM)。SiC f 和 CuCrZr 的组合作为含有活性冷却剂的金属基复合材料将被视为一个重大机遇,此外,由 SiC 纤维增强 SiC 基体且能够与金属结构连接的复合陶瓷材料在先进热交换器的开发中具有巨大潜力。继续讨论先进制造的主题,使用粉末冶金热等静压和放电等离子烧结等固态加工技术来生产金属、陶瓷和金属陶瓷的近净成形产品是关键的制造研究主题。增材制造 (AM) 用于生产金属和陶瓷部件现在正成为一种可行的制造途径,通过 AM 和减材加工的结合,可以生产出其他任何工艺都无法制造的高效流体承载结构。将其扩展到使用电子束焊接和先进的热处理来提高同质性和提供模块化,现在可以使用双管齐下的解决方案来提高能力和完整性,同时为设计师提供更大的自由度。
2.22. 阿尔万德 (伊朗原子能组织,伊朗伊斯兰共和国) ...................................................................................... 40 2.22.1. 简介 ...................................................................................................... 40 2.22.2. 目的 ...................................................................................................... 40 2.22.3. 主要特点 ............................................................................................. 40 2.23. 达马万德 (伊朗原子能组织,伊朗伊斯兰共和国) ............................................................................. 41 2.23.1. 简介 ...................................................................................................... 41 2.23.2. 目的 ...................................................................................................... 41 2.23.3. 主要特点 ............................................................................................. 41 2.24. IR-T1 (伊朗伊斯兰共和国伊斯兰阿扎德大学) ...................................................................................................... 42 2.24.1. 简介 ...................................................................................................... 42 2.24.2. 目的 ...................................................................................................... 42 2.24.3. 主要特点 ............................................................................................. 42 2.25. DTT (意大利 ENEA) ............................................................................................. 43 2.25.1. 简介 ...................................................................................................... 43 2.25.2. 目的 ...................................................................................................... 43 2.25.3. 主要特点 ............................................................................................. 43 2.26. FTU (意大利 ENEA) ............................................................................................. 44 2.26.1. 简介 ...................................................................................................... 44 2.26.2. 目的 ...................................................................................................... 44 2.26.3.主要特点 ................................................................................................ 44 2.27. LATE(日本京都大学) ...................................................................... 45 2.27.1. 简介 ................................................................................................ 45 2.27.2. 目的 ................................................................................................ 45 2.27.3. 主要特点 ............................................................................................. 45 2.28. PLATO(日本九州大学) ...................................................................... 46 2.28.1. 简介 ................................................................................................ 46 2.28.2. 目的 ............................................................................................................................. 46 2.28.3. 主要特点 .............................................................................. 46 2.29. QUEST(日本九州大学) .............................................................. 47 2.29.1. 简介 .............................................................................................. 47 2.29.2. 目的 .............................................................................................. 47 2.29.3. 主要特点 ...................................................................................... 47 2.30. HYBTOK-II(日本名古屋大学) ............................................. 48 2.30.1. 简介 .............................................................................................. 48 2.30.2. 目的 .............................................................................................. 48 2.30.3. 主要特点 ...................................................................................... 48 2.31. TOKASTAR-2(日本名古屋大学) ............................................. 49 2.31.1. 简介 .............................................................................................. 49 2.31.2.目的 ................................................................................................ 49 2.31.3. 主要特点 ...................................................................................... 49 2.32. JT-60SA(日本国立量子放射科学技术研究所) ........................................ 50 2.32.1. 简介 ............................................................................................. 50 2.32.2. 目的 ............................................................................................. 50 2.32.3. 主要特点 ............................................................................................. 50 2.33. TST-2(日本东京大学) ............................................................. 51 2.33.1. 简介 ............................................................................................. 51 2.33.2. 目的 ............................................................................................. 51........................................................................... 48 2.31. TOKASTAR-2(日本名古屋大学) .............................................. 49 2.31.1. 简介 .............................................................................................. 49 2.31.2. 目的 .............................................................................................. 49 2.31.3. 主要特点 ...................................................................................... 49 2.32. JT-60SA(日本国立量子放射科学技术研究所) ............................................. 50 2.32.1. 简介 ............................................................................................. 50 2.32.2. 目的 ............................................................................................. 50 2.32.3. 主要特点 ............................................................................................. 50 2.33. TST-2(日本东京大学) ............................................................. 51 2.33.1. 2.33.2. 简介 ................................................................................................ 51 2.33.2. 目的 .............................................................................................. 51........................................................................... 48 2.31. TOKASTAR-2(日本名古屋大学) .............................................. 49 2.31.1. 简介 .............................................................................................. 49 2.31.2. 目的 .............................................................................................. 49 2.31.3. 主要特点 ...................................................................................... 49 2.32. JT-60SA(日本国立量子放射科学技术研究所) ............................................. 50 2.32.1. 简介 ............................................................................................. 50 2.32.2. 目的 ............................................................................................. 50 2.32.3. 主要特点 ............................................................................................. 50 2.33. TST-2(日本东京大学) ............................................................. 51 2.33.1. 2.33.2. 简介 ................................................................................................ 51 2.33.2. 目的 .............................................................................................. 51
摘要。背景/目标:在某些白血病患者中报告了组蛋白 - 赖氨酸N-甲基转移酶2a基因(KMT2A)与Rho鸟嘌呤核苷酸交换因子12基因(ARHGEF12)的融合,均在某些白血病患者中融合。我们报告了在治疗带有拓扑异构酶II抑制剂的小儿急性髓样白血病(AML)期间发生的KMT2A-ARHGEF12融合,导致继发性急性淋巴细胞性白血病(全部)。材料和方法:对最初诊断为AML的女孩的骨髓细胞进行了多次遗传分析。结果:在使用AML诊断时,发现T(9; 11)(P21; Q23)/KMT2A-MLLT3遗传异常。化学疗法导致AML临床缓解后,发现在11q23中发现了2 MB缺失,产生了KMT2A-ARHGEF12融合基因。当患者后来出现B谱系时,检测到A T(14; 19)(Q32; Q13),一个染色体9染色体的丢失和KMT2A-ARHGEF12。结论:患者在骨髓细胞中依次开发了AML,所有患者均具有三个白血病特异性基因组异常,其中两个是KMT2A的重态。
在本演讲中的陈述与甲骨文的未来计划,期望,信念,意图和前景有关,是“前瞻性陈述”,并受到物质风险和不确定性的影响。对影响我们业务的这些因素和其他风险的详细讨论包含在Oracle的证券交易委员会(SEC)文件中,包括我们在“风险因素”标题下的10-K和表格10-Q的最新报告。这些文件可在SEC的网站或Oracle网站上找到,网址为http://www.oracle.com/investor。本演示文稿中的所有信息截至2024年9月,Oracle不承担根据新信息或未来事件更新任何声明的义务。
真空泵精确工程和制造服务控制软件功率半导体氘,trium或其他气体融合燃料招募专用金属,例如高级钢普通金属,例如镍,铜工程,采购和建筑公司热管理技术天然锂第一壁材料法律服务的低温设备磁铁RF加热锂(富集)高温超导超导(HTS)胶带激光器(组装)稀土金属激光元件,例如。二极管,激光玻璃
因此,FEC 2023 的范围旨在反映新时代在聚变能源研究、技术开发和工业部署准备方面的优先事项。会议旨在作为一个平台,分享受这些新优先事项影响的国家和国际聚变计划的研究和开发成果,从而帮助确定全球在聚变理论、实验、技术、工程、材料、先进概念、安全、社会经济和工业部署准备方面的进展。此外,会议还将根据净能量产生聚变装置和聚变发电厂的总体要求来设定这些结果,从而帮助确定前进的方向。