在光纤中基于KERR非线性的四波混合(FWM)过程已被证明可以在过去二十年中启用许多全光信号处理设备,例如波长转换器[1,2],光相结合器[3-5] [3-5]和相位敏感的放大器[6,7]。这些全光学系统可能会成为未来高容量波长多路复用(WDM)网络的重要组成部分,这要归功于它们在超宽带宽和延迟较低的情况下运行的潜力。有多种通常用于FWM的非线性介质,包括硅[8-10]硝酸硅[11-15]和半导体光学放大器(SOAS)[16-19],对于全光信号处理应用来说是有希望的。值得注意的是,硅和SOA在适当地进行工程时表现出了它们在执行极化信号处理操作[20-22]方面的潜力。由于其低耦合损耗(当剪接时)和低传播损失,光纤(尤其是高度非线性纤维(HNLF)[23,24]的低耦合损耗(当时)[23,24],分散较低)仍然是一种流行的培养基。在许多FWM过程中,需要非生物的纤维。但是,实际上,现实世界中的纤维样品通常将具有一些小的残留双折射,导致它们被描述为“低折双发性”纤维。此类纤维[23]已知在核心直径中表现出随机的纵向变化,进而导致纵向变化的双折射。纵向变化的双折射随机使输入信号的极化状态随机,使基于FWM的设备对极化更敏感,这可能对需要极化的强度敏感的应用特别有害[25]。众所周知,即使是从相同的纤维线轴捕获的样品的纤维双发性分布也不同于样品之间,这使得给定系统的确切行为降低了基于纤维的FWM技术的可预测性,更复杂的商业化。
摘要:二维有机-无机卤化铅钙钛矿由于其光电特性(例如高太阳能转换效率和可见光区域可调的直接带隙)而引起人们的极大兴趣。然而,二维晶体结构中缺陷态的存在会影响这些特性,导致其带隙发射发生变化以及出现非线性光学现象。在这里,我们研究了缺陷态的存在对二维混合钙钛矿 (BA) 2 (MA) 2 Pb 3 Br 10 的非线性光学现象的影响。当两个脉冲(一个以 800nm 为中心的窄带泵浦脉冲和一个带宽为 800-1100nm 的超连续脉冲)入射到钙钛矿薄片上时,会发生简并四波混频 (FWM),其峰值对应于晶体中存在的缺陷态的能级。与非共振 FWM 过程中发生的虚拟跃迁相比,缺陷态的载流子寿命更长,这使得更多的电子能够被第二个泵浦光子激发,从而导致缺陷能级的 FWM 信号增强。随着薄片厚度的增加,双光子发光的猝灭现象也得到了观察,这归因于厚度较大时薄片内缺陷的存在增加。该技术展示了使用 FWM 检测晶体中缺陷能级的潜力,可用于各种光电应用。关键词:钙钛矿、非线性光学、材料、缺陷、荧光 ■ 简介
光场的四波混频 (FWM) 已广泛应用于量子信息处理、传感和存储。它还构成了非线性光谱的基础,例如瞬态光栅、受激拉曼和光子回波,其中相位匹配用于选择物质三阶响应的所需分量。在这里,我们报告了一项实验研究,研究了由 FWM 在热 Rb 蒸汽中产生的一对压缩光束的二维量子噪声强度差谱。该测量揭示了由强泵浦场引起的 AC 斯塔克位移所修饰的 χ (3) 磁化率的细节,与经典的探测和共轭光束强度测量相比具有更高的光谱分辨率。我们展示了如何利用压缩光的量子关联作为光谱工具,与经典工具不同,它对外部噪声具有鲁棒性。
通过四波混频产生光对波分复用 (WDM) 这一快速发展的电信领域有着严重影响。WDM 系统使用多个通道(通常为 16 或 32 个)通过光纤发送数据,每个通道都有自己的指定频率。如果两个或多个通道通过四波混频相互作用,则将以新频率产生光功率,但代价是原始通道的功率降低。这种功率损失使得在光纤远端正确检测这些通道中的数字数据变得更加困难,从而更容易出错。更严重的后果是,两个或三个通道之间的 FWM 产生的光的频率与其他分配的通道之一一致。然后,FWM 产生的光会在该通道上充当噪声,导致整个系统性能进一步下降。因此,采取措施避免多通道光通信系统中的四波混频非常重要。通过确保不发生相位匹配,可以最大限度地减少 WDM 系统中的四波混频。这可以通过使用多种方法来实现,包括不均匀间隔通道和在通道以不同速度传播的波长下操作。第 2 节将更详细地讨论此主题。
通过四波混频产生光对波分复用 (WDM) 这一快速发展的电信领域有着严重影响。WDM 系统使用多个通道(通常为 16 或 32 个)通过光纤发送数据,每个通道都有自己的指定频率。如果两个或多个通道通过四波混频相互作用,则将以新频率产生光功率,但代价是原始通道的功率降低。这种功率损耗使得在光纤远端正确检测这些通道中的数字数据变得更加困难,从而更容易出错。更严重的后果是,两个或三个通道之间的 FWM 产生的光的频率与其他分配的通道之一一致。然后,FWM 产生的光会在该通道上充当噪声,导致整个系统性能进一步下降。因此,采取措施避免多通道光通信系统中的四波混频非常重要。通过确保不发生相位匹配,可以最大限度地减少 WDM 系统中的四波混频。这可以通过使用多种方法来实现,包括不均匀地间隔通道和在通道以不同速度传播的波长下操作。第 2 节将更详细地讨论此主题。
图1。(a)双泵BS FWM工作原理。当两个泵(𝑃1和𝑃2)和播种信号(𝑆)输入三阶非线性波导中时,在满足相位匹配条件的假设下,BS FWM可能会发生。在这种情况下,光子从信号𝑆散射到两个怠速(𝐼,𝑏和𝐼,𝑟),并在两个泵之间同时进行能量交换。实心箭头表示光子能量的损失(下)和增益(向上),而虚线箭头表示𝐼,𝑟(红色)和𝐼(blue)cases的能量交换的方向。(b)BS-IM-FWM方案的相位匹配机理的图形说明。如果将𝑃1和𝑃2放置在𝑇𝐸00模式下,并且在多模式波导的10模式下的信号和空闲器,则可以在平均频率的两个pumencies和light of the Myder的igv曲线上绘制两个级别的IGV曲线的水平线(以及两个泵的ig p pulps of puls或the p pys)的水平曲线,并保留相匹配条件,并保留。 𝐵𝑆,𝑟)。