基于事件的传感是一种相对较新的成像模态,可实现低潜伏期,低功率,高时间分解和高动态范围采集。这些支持使其成为边缘应用和在高动态范围环境中的高度可取的传感器。截至今天,大多数基于事件的传感器都是单色的(灰度),在单个通道中捕获了Visi-ble上广泛光谱范围的光。在本文中,我们介绍了穆斯特朗事件并研究了它们的优势。尤其是我们在可见范围内和近红外范围内考虑多个频段,并探索与单色事件和用于面部检测任务的传统多光谱成像相比的潜力。我们进一步发布了第一个大型双峰面检测数据集,其中包含RGB视频及其模拟色彩事件,N-Mobiface和N-Youtubefaces,以及带有多光谱视频和事件的较小数据集,N-SpectralFace。与常规多频谱图像的早期融合相比,多阶段事件的早期融合可显着改善面部检测性能。此结果表明,相对于灰度等效物,多光谱事件比传统的多光谱图像具有相对有用的有关场景的信息。据我们所知,我们提出的方法是关于多光谱事件的首次探索性研究,特别是包括近红外数据。
成年肠是一个区域化器官,其大小和细胞组成是根据营养状态调整的。这涉及肠道干细胞(ISC)增殖和分化的动态调节。Nu-Trient信号如何控制细胞命运决策以驱动细胞类型组成的区域变化尚不清楚。在这里,我们表明肠道营养适应涉及细胞大小,细胞数和分化的区域特异性控制。我们发现MTOR复合物1(MTORC1)的激活以特定于区域的方式增加了ISC的大小。mTORC1活性促进了三角洲表达,将细胞命运引导到吸收性肠细胞谱系,同时抑制分泌的肠肠分离细胞分化。在老化的苍蝇中,ISC MTORC1信号被解剖,组成型高且对饮食无反应,可以通过终身间歇性禁食来缓解这种饮食。总而言之,MTORC1信号传导有助于ISC命运决策,从而使肠道细胞分化的区域控制对营养。
模拟在粒子和核物理学中起重要作用。它被广泛用于DECOTER设计和实验数据和理论模型之间的比较。在特定上,模拟依赖于蒙特卡洛方法,需要显着的计算资源。尤其是,这种方法不能扩展以满足高光度大型强子对撞机(HL-LHC)运行期间预期的大量数据所产生的增长需求。使用众所周知的仿真软件Geant4捕获的粒子碰撞和相互作用的详细模拟需要数十亿个CPU小时,构成了LHC实验的一半以上的计算源[1,2]。更具体地说,对热量表中粒子阵雨的详细模拟是计算最高的步骤。已经开发了利用重复使用先前计算或测量物理量的思想的模拟方法,以减少计算时间[3,4]。这些方法从专门进行到单独的实验中,尽管它们比完整的模拟更快,但它们的速度不够快或缺乏准确性。因此,粒子物理社区需要使用新的更快的模拟方法来建模实验。模拟热量计响应的可能方法之一是使用深度学习技术。,特别是最近的工作[5]提供了证据,表明可以使用生成性副本网络来效果模拟粒子阵雨。虽然实现了超过100 000倍的速度,但设置非常简单,因为输入粒子为
幸运的是,我们手头有工具可以负责任地减少对昂贵且有风险的化石燃料的过度依赖,同时降低客户的电费。提交给爱荷华州公用事业委员会的分析显示,如果 MidAmerican Energy 在 2030 年前关闭所有燃煤电厂,并用 2,060 兆瓦的太阳能、740 兆瓦的储能和 2,000 兆瓦的风能、能源效率和需求响应取而代之,那么爱荷华州居民可以节省近 12 亿美元。这是因为继续运营这些电厂的成本高于建造可再生能源来取代它们。这还没有考虑到新清洁能源带来的经济发展效益,包括创造就业机会、为农民和土地所有者增加收入以及吸引那些寻求使用清洁能源生产产品的公司。
职业应用疲劳以及许多其他人类绩效因素,影响工人的健康状况,从而产生了生产质量和效率。采用行业5.0观点,我们建议将人类绩效模型整合到更广泛的工业系统模型中可以提高建模准确性并带来卓越的成果。将我们的工人疲劳模型整合为其工业系统建筑师模型的一部分,使领先的飞机制造商Airbus可以更准确地预测系统的性能,这是劳动力妆容的函数,这可能是人类工人和机器人的组合,或者是经验丰富且经验丰富且经验丰富且经验丰富的工人的组合。我们的方法证明了将人类绩效模型包括在商店地板上引入机器人的重要性和价值,可用于在工业系统模型中包括人类绩效的各个方面,以满足特定的任务要求或不同级别的自动化。
● 编程作业 (25 %) 将会有几项编程作业,涉及 OO 编程、OO 设计和 UML 图。所有作业都是个人作业。逾期的作业将不被接受。 ● 测验 (10 %) 每章之后都会有简短的测验。这些测验的目的是鼓励学生阅读课程材料并理解概念。这些测验的目的是帮助学生更好地理解概念并将其应用于作业以及为期中和期末考试做准备。 ● 项目 (20 %) 每学期最后一个月,每个小组由 3 名成员组成一个小组项目,涉及 OO 设计和 GUI 编程。 ● 期中和期末(各占 20 %) 将会有一次期中考试和一次期末考试,包括选择题和书面答案。问题可以来自测验、课堂笔记、幻灯片、作业和课堂讨论。 ● 课堂参与 (5 %) 为鼓励参与,您的期末成绩的 5% 将来自您的参与。请注意,参与并不等于出席。
基因治疗是一个前景光明的新领域,最近 CRISPR 技术又丰富了这一领域。CRISPR 或成簇的规律间隔短回文重复序列技术源自细菌防御系统,该系统已适应哺乳动物(包括人类)细胞,以前所未有的精确度诱导基因组改变。该系统的简便性和精确性也保证了其可轻松应用于临床。为了将任何技术应用于临床,除了科学进步,我们还需要可扩展性和监管平台来促进其使用。这对于治疗和诊断都是如此。在诊断领域,我们已经在基于 CRISPR 的 COVID 19 诊断方面拥有丰富的经验。会议还将讨论这一问题,并参考开发基于 CRISPR 的快速准确的即时诊断方法,用于传染性和非传染性疾病。会议将邀请基础科学领域的最前沿演讲者、工作成果正在临床转化的科学家、来自行业、科学机构和患者权益组织的参与者。在观众的积极参与下,此次会议旨在促进对话并为印度有效、安全且可访问的基于 CRISPR 的基因治疗和诊断制定蓝图。
● 灵活、高价值的系列飞机由两架互补的飞机组成,即 A350-900 和 A350-1000,具有高度的通用性(95% 的通用部件号)和相同的型号等级。 ● A350-900 是一个单一且最佳的平台,从短程到超长程飞行,提供无与伦比的运营灵活性和效率。 ● A350-900 超长程 (ULR) 是 A350 系列的最新型号。A350-900ULR 能够不间断飞行 9,700 海里(18,000 公里),是当今所有在役商用客机中航程最长的飞机。
最近,一种名为体积打印 (VP) 的新型基于光的制造方法已成为此类应用的一种有前途的技术,它能够在几秒钟内打印复杂的厘米大小的模型。[26,27] 最近的研究表明,使用从玻璃到生物聚合物等材料,可以创建中空、可灌注结构,并可能针对中尺度血管系统。[28–31] 然而,与上述所有方法一样,VP 也无法覆盖从 µ m/亚 µ m 到 cm 的分辨率范围,因此目前将其应用限制在特征 > 100–200 µ m 的微流体结构上。另一种基于光的方法双光子烧蚀 (2PA) 则提供了互补功能,虽然打印时间和构造尺寸有限,但达到了所有生物制造方法中最高的分辨率(≤ 1 µ m)。 [8] 2PA 是基于高强度脉冲激光诱导的多光子电离,[32,33,34] 并且已被探索用于各种应用,从“纳米手术”到形成细胞指导微通道。[35–41]
fabdem构成了用于流量建模的最佳全球地形数据集。FATHOM将Fabdem与广泛的LiDar数据库混合在一起,为整个星球部署了最佳的可用地形数据。
