量子计算利用量子比特的量子现象(叠加和纠缠)执行复杂的计算任务 [4]。在过去的几十年中,各种各样的量子比特已经被实现,包括超导量子比特 [2],[5],半导体量子点 [6],[7] 和捕获离子量子比特 [8]。在上述量子比特中,捕获离子量子比特因其在量子纠缠中的高保真度而备受关注,因为捕获离子本质上是相同的 [9]。为了将捕获离子量子比特应用于量子计算设备,霍尼韦尔将 QCCD(量子电荷耦合器件)架构实现到可编程捕获离子量子计算机中。在 QCCD 中,捕获离子量子计算机可以通过将离子阱与用于量子比特光学寻址的光电元件集成到一个紧凑的独立设备中来实现。据报道,QCCD 实现了 2 4 的量子体积测量,并且几乎不存在串扰 [10]。
已通过肠内途径(包括颗粒,片剂和胶囊)以及通过肠胃外路线(例如静脉内,动脉内,肌肉内和皮下递送)进行了各种药物输送系统。这些药物输送系统有几个缺点,包括首次代谢的可能性,可以降低药物的生物利用度,以及在施用期间的不适或疼痛的可能性[1]。为了解决限制立即释放制剂的约束,已经创建了一系列新型的药物输送系统,例如微球,微孔,纳米颗粒,纳米属粒子和水凝胶[2]。纳米纤维是非常薄的纤维,直径在1到1000纳米之间,由聚合物产生。通过使用聚合纤维和实施受控释放的给药途径,可以每天或两次使用药物,从而改善患者的依从性并避免有毒等离子体峰
图 3:OT 系统和光学原理图,以及通过不同 OT 设置进行光学微型机器人操作的概念图。(a)基于分时生成多个激光点的传统 OT 系统;相应 OT 系统的光学原理图。(b)使用传统 OT 系统灵巧操作光学微型机器人的概念图。(c)可以产生多个激光点的传统全息光镊 (HOT) 系统;相应 HOT 系统的光学原理图。图片来自 [13]。(d)使用 HOT 系统灵巧操作光学微型机器人的概念图。面板 (a) 根据 CC-BY 许可条款从 [14] 复制。版权所有 2020,作者,由 Wiley 出版。面板 (c) 经许可从 [13] 复制。版权所有 2019,IEEE。
本文探讨了能够达到高温的多磁控管烤箱的设计、制造和性能。首先,模拟了合适的波导,并完成了生产过程。然后,模拟了多磁控管烤箱的拟议设计,并提出了适当的尺寸。据报道,生产的多磁控管烤箱的平均功率密度 (PD) 值为 0.37 mW/cm²,这表明了其性能和效率。该值符合标准,对人体安全。我们研究的主要目的是证明波导可以在烤箱中心达到高温而不会相互影响。在这种情况下,观察到磁控管在单、双、三和四模式下工作时产生的温度在烤箱中心逐渐升高。支持这一点的模拟结果表明 S 21 参数为 -177 dB。我们研究中提出和应用的设计高效、易于生产、对人体安全、成本低,可用于达到高温的商业和学术研究。总体而言,多磁控管烤箱设计被证明是一种成功且实用的解决方案,适用于需要高温的应用,展示了其在工业和研究方面的潜力。这项研究的结果为先进加热技术的开发提供了宝贵的见解,表明高温应用的效率和安全性得到了显著改善。
所有C.O.M.此价格清单中的码数要求基于54英寸宽卷。码是近似的。如果指定了条纹或图案材料,则将码数要求增加10%,如果图案需要匹配,或者材料的宽度小于54英寸宽。对于条纹,图案或独特的设计,必须提供室内装饰应用方向。如果在订单上或随后的“已确认和确认”文件中没有指示指示,我们将以我们认为是最合适的方式的产品中载体。此后我们没有承担任何责任。Grand Rapids主席公司对C.O.M.的火焰质量不承担任何责任对于C.O.L.的订单,将C.O.M.的标价上涨10% 在我们的价格表中。 请咨询您的客户经理以获取COL Square Apotage Supperies。 平方英尺要求基于平均皮革的平均皮革尺寸为45-50平方英尺。 谷物,天然标记或颜色变化的不规则性是预期的,并且是天然豪华皮革的正常特征,使每件作品都独一无二。 确认的船舶日期取决于Com或Col的时间收到的时间。要持有公认的船舶日期,我们必须在预定船舶日期的3周内收到COM/ COL。 接收材料的延迟将导致生产重新安排。 我们保持拒绝使用任何因图案,伸展,重量或可工程性而不适合使用的客户提供的材料或皮革的权利。 所有C.O.M.对于C.O.L.的订单,将C.O.M.的标价上涨10%在我们的价格表中。请咨询您的客户经理以获取COL Square Apotage Supperies。平方英尺要求基于平均皮革的平均皮革尺寸为45-50平方英尺。谷物,天然标记或颜色变化的不规则性是预期的,并且是天然豪华皮革的正常特征,使每件作品都独一无二。确认的船舶日期取决于Com或Col的时间收到的时间。要持有公认的船舶日期,我们必须在预定船舶日期的3周内收到COM/ COL。接收材料的延迟将导致生产重新安排。我们保持拒绝使用任何因图案,伸展,重量或可工程性而不适合使用的客户提供的材料或皮革的权利。所有C.O.M.必须在预付费中发货,并以您的公司名称和采购订单号清楚地标记。
荣誉和奖项·安东尼奥·鲁贝蒂(Antonio Ruberti)青年研究员奖:“他对网络物理安全,复杂网络和数据驱动控制的理论的基本贡献,” IEEE Control Systems Society。2023年12月·O。HugoSchuck最佳纸张奖:“准确性可防止基于感知的控制中的鲁棒性”,《美国控制大会》,1838- 1844年,丹佛,CO,2020年7月。2021年5月·控制系统信件杰出纸张奖:“线性系统的数据驱动最小能量控制”,IEEE LCSS 3(3),589-594,2019。2020年12月·Roberto Tempo最佳CDC论文奖:“控制人脑功能连接的框架”,IEEE决策与控制会议,4697-4704,尼斯,法国,2019年12月。2020年12月·ACC最佳学生纸奖决赛入围者(高级作者):“准确性阻止基于感知的控制中的鲁棒性”,美国控制会议,丹佛市,2020年7月·AFOSR青年研究者研究奖:“数据驱动的动态网络控制”。2019年10月·ACC最佳学生纸奖(高级作者):“库拉莫托振荡器集群同步的精确而近似的稳定条件”,宾夕法尼亚州费城美国控制会议。 2019年7月·ARO Young Deskuckator计划奖:“安全多代理网络的设计和操作”。2017年9月
为了克服气味问题,抑制了汗液被细菌降解。在本研究中,改进的复合凝聚技术涉及纳米胶囊的形成,纳米胶囊中储存了抗菌和芳香化合物。改进的复合凝聚技术需要高速混合溶液以生产纳米胶囊。在本研究中,海藻酸钠、明胶和阿拉伯胶被用作壁材。芦荟和薄荷精油被用作核心,其重量与壁材相等。通过傅里叶变换红外光谱 (FTIR)、扫描电子显微镜 (SEM)、甲醛释放测试和 AATCC 100 抗菌活性测试对合成纳米胶囊制备的涂层样品进行表征,以验证具有抗菌和芳香特性的纳米胶囊的形成。
摘要 钛合金定向能量沉积 (DED) 因其在自由成型和再制造方面的灵活性而成为一种快速发展的技术。然而,沉积过程中凝固微观组织的不确定性限制了其发展。本文提出了一种人工神经网络 (ANN) 来研究晶界倾斜角与三个致病因素(即热梯度、晶体取向和马兰戈尼效应)之间的关系。在田口实验设计下进行了一系列线材 DED、光学显微镜 (OM) 和电子背散射衍射 (EBSD) 实验,以收集 ANN 的训练和测试数据。与传统的微观结构模拟方法相比,本文开发的策略和 ANN 模型被证明是一种描述 DED 制备 Ti6Al4V 中竞争性晶粒生长行为的有效方法。它们可用于实现定量微观结构模拟,并扩展到其他多晶材料凝固过程。
EICT 学院主席兼院长 MNIT 斋浦尔 Narayana Prasad Padhy 教授 EICT 学院首席研究员 Vineet Sahula 教授 EICT 学院 ECE 协调员 Satyasai Jagannath Nanda 博士,ECE EICT 学院联合首席研究员 Lava Bhargava 教授,ECE Pilli Emmanuel Shubhakar 教授,CSE Ravi Kumar Maddila 博士,ECE 目标(电子与 ICT 学院 - 第二阶段) 1) 按照 MeitY 的愿景,通过推广新兴技术领域和其他高优先级领域开展专门的 FDP,这些领域是“印度制造”和“数字印度”计划的支柱。 2) 促进与工业、学术界、大学和其他学习机构的协同与合作,特别是在新兴技术领域。 3) 支持《2019 年国家电子政策》(NPE 2019),该政策旨在将印度定位为 ESDM 领域的全球中心,包括 MeitY 计划/政策,例如半导体和显示器工厂生态系统计划;印度人工智能;国家人工智能计划、IT 硬件和大规模电子制造生产挂钩激励计划;EMC;SPECS;芯片到系统 (C2S);等等。4) 通过联合教师发展计划促进 FDP 的标准化。5) 支持国家教育政策(NEP 2020)的愿景,该政策要求印度教育工作者每年至少要参加 50 小时的专业发展计划。 6)为高等教育机构(HEI)的师生设计、开发和交付有关新兴技术/细分领域/特定研究领域的专业 FDP,以及与 ICT 工具和技术以及其他数字混合领域相关的多学科领域的 FDP,涵盖广泛的工程和非工程学院、理工学院、ITI 和 PGT 教育者。
[2025 年 1 月 20 日至 31 日,16:00 至 20:00] ▪ 半导体制造 - 制造半导体器件(如集成电路 (IC))的过程 ▪ CMOS 制造 ▪ 晶体生长和清洗 ▪ 热氧化和后端技术 ▪ 光刻和蚀刻 ▪ 扩散和离子注入 ▪ 沉积和蚀刻(PVD、CVD、PECVD) ▪ 半导体键合、封装和测试 - 保护半导体器件并将其连接到外部环境的过程 ▪ 组装和包装 ▪ 半导体封装中使用的材料,如陶瓷和塑料 ▪ 用于连接组件的引线键合或倒装芯片键合技术 ▪ 测试封装设备以确保其符合性能规范