医疗保健纺织品是病原体增殖的关键储层,要求紧急呼吁进行创新的干预措施。在这里,通过集成的“排斥,杀死和检测”功能引入了一类新的智能织物(SF),这是通过层次结构化的微粒,修改的纳米粒子和酸性响应性传感器来实现的。SF对气溶胶和基于液滴的病原体的传播具有显着的弹性,与各种耐药细菌,念珠菌和PHI6病毒的未涂层织物相比,减少的降低超过了99.90%。与未涂层的织物相比,涉及健康和受感染个体的体液的实验分别显示出99.88%和99.79%的临床尿液和粪便样本的实验。SF的比色检测能力以及机器学习(96.67%的精度)确保了可靠的病原体鉴定,从而促进了健康和感染的尿液和粪便污染的样品之间的准确分歧。sf有望在医疗机构中革新预防感染和控制,从而通过早期污染检测提供保护。
提出的实验论文是光子学[1-4]的所谓添加剂制造(FA或通常是“ 3D打印”)的背景的一部分。,我们的目标是由二氧化硅玻璃预成型的“光功能”激光协助的添加剂制造。这些预形成将在包含这些“功能”的光纤中拉伸。基于在实验室中实施了基于玻璃料中装有氧化物颗粒的聚合物树脂的多泵聚合物(MPP多光子聚合物化)的添加剂制造技术。inphyni选择的方法的独创性在于激光对模式的写作配置,以及将此步骤集成到Inphyni中良好控制的技术中。新技术将使制造复杂的结构集成到光纤中,并对组成和形式进行三维控制。提出的论文旨在定义在二氧化硅上进行制造预成型所需的实验条件,并研究在最终光纤中获得“功能”所需的参数。主要工作是实验性的,旨在使用MPP和在二氧化硅中生产光纤的标准方法,适合FA。
生物塑料的水分含量是指生产过程后的生物塑料的质量百分比。随着使用增塑剂的使用而增加了水分含量。来自图3,为合成的最大甘油添加最大甘油的生物塑料的水分含量最高(49%),并且添加氯仿百分比最高的生物塑料具有最低的水分含量(30%)。当两者之间的比率为1:1时,中间的水分含量位于中间。先前的研究中,香蕉皮被用于制作基于淀粉的生物聚合物(4)表明,基于甘油的生物塑料具有较高的水分含量值。这是因为甘油是羟基的一部分,该羟基很容易与水分子形成氢键,并且对它们具有很大的亲和力。
摘要:纳米纤维的生产已成为重要的研究领域,因为它们在生物医学,纺织品,能源和环境科学等各个领域的独特性和多种应用。静电纺丝是一种多功能且可扩展的技术,它因其能够用量身定制的特性制造纳米纤维的能力而引起了人们的关注。在各种构造聚合物中,由于其特殊的电导率,环境稳定性和易于合成性,因此出现了聚(3,4-乙基二苯乙烯)(PEDOT)(PEDOT)作为有希望的材料。基于PEDOT的纳米纤维的静电纺丝提供可调的电气和光学性能,使其适用于有机电子,储能,生物医学和可穿戴技术中的应用。This review, with its comprehensive exploration of the fabrication, properties, and applications of PEDOT nanofibers produced via electrospinning, provides a wealth of knowledge and insights into lever- aging the full potential of PEDOT nanofibers in next-generation electronic and functional devices by examining recent advancements in the synthesis, functionalization, and post-treatment methods of PEDOT nanofibers.此外,审查确定了当前的挑战,未来的方向以及潜在的策略,以解决可扩展性,可重复性,稳定性和集成到实用设备中,从而为导电纳米纤维提供了全面的资源。
FABrIC 是一个为期五年、耗资 2.2 亿美元的项目,旨在帮助确保加拿大在半导体领域的未来。半导体为数字经济提供动力,是经济增长的推动力:2022 年,半导体行业的价值超过 5000 亿美元,预计到 2030 年将达到 1 万亿美元。然而,由于疫情和最近的地缘政治变化导致供应中断,过去几年全球半导体格局发生了重大变化。世界各国政府已承诺进行前所未有的投资,以支持其半导体行业、在岸制造并刺激战略技术的研究和产品开发。加拿大也有机会巩固我们在全球半导体市场的地位,并从该领域的增长中受益。为了参与竞争,我们认为我们必须投资于战略领域,以加速加拿大已经拥有强大能力和全球认可的技术和产品的开发和商业化。
事实证明,二维层状材料的氧化有利于形成氧化物/二维材料异质结构,这为低功耗电子设备的新范式打开了大门。硫化镓(II)(𝜷-GaS)是一种六方相 III 族单硫属化物,是一种宽带隙半导体,单层和少层形式的带隙超过 3 eV。其氧化物氧化镓(Ga 2 O 3)兼具大带隙(4.4-5.3 eV)和高介电常数(≈ 10)。尽管这两种材料都具有技术潜力,但原子级厚度的𝜷-GaS 的受控氧化仍未得到充分探索。本研究重点关注使用氧等离子体处理对𝜷-GaS 进行受控氧化,以解决现有研究中的重大空白。结果表明,在暴露于 10 W 的 O 2 时,能够形成厚度为 4 nm 的超薄天然氧化物 (GaS x O y ),从而形成 GaS x O y /GaS 异质结构,其下方的 GaS 层保持完整。通过将此类结构集成在金属电极之间并施加电压斜坡或脉冲等电应力,研究了它们在电阻式随机存取存储器 (ReRAM) 中的应用。所产生的氧化物的超薄特性可实现低操作功率,能耗低至每次操作 0.22 nJ,同时分别保持 350 次循环和 10 4 s 的耐久性和保持力。这些结果表明基于氧化的 GaS x O y /GaS 异质结构在电子应用,特别是低功耗存储设备中具有巨大的潜力。
摘要:这项研究探讨了旨在有效回收各种塑料废物的改进压缩成型机的设计和性能的进步,重点是聚乙烯第三苯甲酸酯(PET)。随着全球塑料废物积累带来严重的环境挑战,增强回收技术是必须的。在200°C,250°C和300°C的工作温度下测试了重新设计的机器,突出了温度和加工持续时间在确定产品质量中的关键作用。理论加热时间由于现实世界中的效率低下(例如热损失和导热率变化)而比实际时间短。加热过程中的体重减轻归因于挥发性成分和热降解的蒸发。在延长加热时间的样品中形成了空气孔,强调了精确过程控制的必要性。在大约250°C下有效启动的宠物熔化过程。改进的机器在提高回收效率和多功能性方面具有巨大的潜力。关键字:塑料回收;压缩成型;聚对苯二甲酸酯(PET);热降解;可持续废物管理;环境影响
摘要:大型复合结构,例如在风能应用中使用的结构,依赖于热量的大规模聚合在令人印象深刻的大规模上。为了实现这一目标,传统的热固性聚合需要升高温度(> 100°C)和延长的治疗持续时间(> 5 h),以进行完全转换,因此需要使用超大烤箱或加热的模具。反过来,这些要求导致能源密集型聚合,从而产生了高生产成本和流程排放。在这项研究中,我们开发了可以在室温下通过变换的“化学加热”概念在室温下启动的热固性聚合,其中使用次级反应的放热能量来促进一级热代理聚合的加热。通过利用氧化还原引起的甲基丙烯酸甲酯自由基聚合作为放热化学能的来源,我们可以达到峰值反应温度> 140°C,以启动环氧 - 酸性热体的聚合,而无需外部加热。此外,通过采用特洛伊甲基丙烯酸甲酯单体在甲基丙烯酸酯和环氧树脂 - 酸酐结构域之间诱导混合,我们实现了与竞争性热力学特性和可调性的均质混合聚合物材料的合成。在此,我们为我们的创新化学加热方法建立了概念概念,并主张其工业整合,以更广泛地对风叶片和大型复合零件进行更节能和简化的制造。关键词:能源效率,制造,复合合成,热固性,双重治疗,化学加热,可回收划分■简介
美国政府根据其他交易协议编号HQ00342390025赞助的努力,美国高级功能面料,公司和政府。尽管有任何版权符号,但美国政府有权出于政府目的复制和分发转载。本文所包含的观点和结论是作者的观点,不应被解释为一定代表美国政府的官方政策或认可。使用,重复或披露应受到美国高级功能织物公司和政府之间HQ00342390025的限制。
