IT部门的管理员可以访问Fortipam“跳”到每个织物设备。 IT管理员仅允许访问秘密。 秘密是代表访问目标的方法和凭证的核心fortipam资产;在这种情况下,目标是不同的织物设备。 IT管理员只要通过身份验证和ZTNA安全检查就可以访问Fortipam。IT部门的管理员可以访问Fortipam“跳”到每个织物设备。IT管理员仅允许访问秘密。秘密是代表访问目标的方法和凭证的核心fortipam资产;在这种情况下,目标是不同的织物设备。IT管理员只要通过身份验证和ZTNA安全检查就可以访问Fortipam。
摘要:锂离子电池电极通常是通过泥浆铸造来制造的,浆液铸造涉及在溶剂中混合活性材料颗粒,导电碳和聚合物粘合剂,然后在电流收集器(Al或Cu)上铸造并烘干涂层(AL或CU)。这些电极的功能性,但在孔网络渗透,电子连接性和机械稳定性方面仍然有限,导致循环时电子/离子电导率和机械完整性较差,从而导致电池降解。为了解决这个问题,我们通过静电纺丝和热解的结合来制造类似毛状的碳 - 铁织物。与浆液铸fe 2 O 3和基于石墨的电极相比,对于半细胞和完整的细胞测试,碳 - 铁织物(CMF)电极提供了增强的高速容量(10C及以上)和稳定性(后者均具有标准锂镍含量镍含量的含量含量液化液含量含量液化液含量(LNMO))。此外,CMF是独立且轻巧的;因此,未来的研究可能包括将其缩放为小袋细胞的阳极材料和18,650个圆柱电池。关键字:锂离子电池,碳 - 金属织物,电纺,独立电极,电流收集器
摘要:医学教育在推动全球医学科学发展中发挥着重要作用。然而,医学教学与临床实际任务之间存在的内在差距导致教育效率低下和学生的主动性较弱。传感织物和嵌入式计算的最新发展,以及人工智能(AI)和数字孪生技术的进步,为医学研究向数字化转型铺平了道路。在本文中,我们提出了一种基于新型功能织物材料和由5G和物联网(IoT)技术支持的数字孪生网络的智能织物空间。在这个空间中,医学生可以通过数字和现实世界的协作映射、信息物理交互和实时触觉反馈来学习知识。而提出的服务系统将评估和反馈学生的操作行为,以提高他们的实验技能。我们为医学教育提供了智能织物空间的四个典型应用,包括医学教育培训、健康和行为跟踪、操作回放和再现以及医学知识普及。提出的智能织物空间有可能通过有效和高效的方式促进创新技术,以培养前沿医学生。
新闻新加坡新闻稿,2022年6月2日,新加坡新加坡科学家开发了一种“面料”,将身体运动变成电力“面料”,有一天可以将其整合到衣服或可穿戴的电子产品中,向Nanyang Technological University,新加坡新加坡(新加坡NTU)的GO科学家使用电源设备,从而开发了一种可伸展的和水的“ Fabric” Fabric'Fabric'Faffic'能量生成的能量能量发电,使电型转向电力发动。织物中的关键成分是一种聚合物,当被压缩或挤压时,将机械应力转换为电能。它也用可拉伸的氨纶作为基础层制成,并与类似橡胶的材料集成,以保持其坚固,柔性和防水(请参见下面的图像在编辑器的注释中)。在4月的《科学杂志高级材料》中报道的概念验证实验中,NTU新加坡团队表明,敲击3厘米乘4厘米的新织物的新织物产生了足够的电能以点亮100 LED。洗涤,折叠和折断织物不会引起任何性能降解,并且可以保持稳定的电气输出长达五个月,这表明其可能用作智能纺织品和可穿戴的电源。材料科学家和NTU副教务长(研究生教育)领导该研究的Lee Pooi See教授说:“已经有很多尝试开发可以从运动中收获能量的面料或服装的尝试,但巨大的挑战是开发在洗涤后不会降低功能的事物,同时仍保留出色的电气输出。在我们的研究中,我们证明了我们的原型在洗涤和折磨后继续运转良好。我们认为它可以编织成T恤或整合到鞋底上,以从人体最小的动作中收集能量,将电源运送到移动设备。”
抽象涂层是用于不同目的的纺织行业中广泛的技术,主要是在着色和功能表面上。石墨烯通常使用涂料技术应用于织物,以提供具有导热性或电导率等特性的织物。所有编织织物的结构都有峰值和山谷,由翘曲和纬线交织在一起。在散布石墨烯涂层时,将糊剂放在织物的间隙中,并且只有在涂层的高度足以连接沉积的不同区域时才产生导电颗粒之间的连接。本文分析了三种类型的缎面编织,三个交错系数(0.4、0.25、0.17)和两组纬纱(20和71.43 Tex)。对于1.5毫米的叶片间隙,纬纱计数的样品的电阻为20 tex且交错系数为0.4为534.33Ω,而对于IC = 0.25的0.25电阻高36.8%,对于IC = 0.17,此参数增加了249.3%。对于具有71.43的纬纱计数的样品,IC = 0.40的样品的电阻为1053Ω,对于IC = 0.25,此值升至33.9%,而对于IC = 0.17,电阻值总计增加了78.9%。对于连续性至关重要的涂层,并且需要保护需要保护外部因素的物质,这一发现可能是感兴趣的,对于需要保护的物质,可以将具有深层间隙的织物设计用于容纳所述产品。
抽象的自主织物操纵是一项艰巨的任务,这是由于复杂的动态和织物处理过程中的潜在自我封锁。首先,一种直观的织物折叠操作方法涉及在折叠过程开始之前获得光滑而展开的织物配置。然而,诸如拾音器和地点之类的准静态动作与动态动作(如流动)的结合证明在有效地展开长袖T恤上,袖子大多在服装内部塞满了袖子。为了解决此限制,本文介绍了一种称为Pick&Drag的增强的准静态动作,该动作专门设计用于处理这种类型的织物配置。此外,本文设计了一个有效的双臂操纵系统,该系统结合了准静态(包括拾取和位置和拾取和拖动)和动态动作,以使织物脱颖而出地将织物操纵为未折叠和平滑的构造。随后,一旦确定织物可以很好地展开并检测到所有织物关键点,则使用基于密钥的启发式折叠算法用于织物折叠过程。为了解决真实织物的公开可用关键点检测数据集的稀缺性,我们收集了各种织物配置和类型的图像,以创建用于织物折叠的综合关键点数据集。此数据集旨在提高按键点检测的成功率。此外,我们在现实世界中评估了我们提出的系统的效果,在现实世界中,它始终可靠地展开并折叠了各种类型的织物,包括具有挑战性的情境,例如长期扎根的T恤,包括大部分袖子都在衣服内部藏起来。特别是,我们的方法达到的覆盖率为0.822,长袖T恤折叠的成功率为0.88。补充材料和数据集可在我们的项目网页上找到,网址为https://sites.google.com/view/fabricfolding。
考虑用于染色不同纺织材料的过程消耗的大量水量,持续的扩展集中在设计更可持续的染色方法。分散染料的染料不溶于水,因此经常使用有毒的染色辅助(载体和分散剂)溶解它们。在当前的工作中,以双重方式使用了基于甜菜碱的天然深层溶剂(NADE):确保减少产生的废水并消除对环境不友好的辅助设备(例如分散剂和载体)的需求。染色实验。涉及常规方法,在添加载体,分散剂和乙酸的情况下,在100°C下进行染色45分钟。相比之下,基于NADE的方法涉及织物染色,以70:30的比例为nades和蒸馏水的混合物。对于两种方法,pH值4的pH值保持相同。染色效率。基于NADE的方法恶魔均取得了更好的整体性能,而不会影响聚酯织物的拉伸强度和休息时伸长率。基于获得的结果,基于甜菜碱的nades可以用作聚酯染色的“绿色”培养基。
日本东京,2022 年 2 月 17 日——帝人株式会社今天宣布,该公司已推出一种轻质、坚固且经济高效的碳纤维机织织物,该织物采用该公司专有的丝束铺展技术开发而成。这种新型机织织物采用 3K(3,000)碳纤维长丝制成,适用于需要低重量和设计灵活性的应用,例如汽车内饰材料和体育用品。帝人利用其内部的丝束铺展技术,成功地将 3K 织物从成型厚度 0.2 毫米减薄至约 0.15 毫米,与 1K 机织织物成型为碳纤维增强塑料 (CFRP) 时的厚度相同。由于织物交叉纱线的平坦起伏,用帝人新织物制成的 CFRP 具有出色的平滑度,与用 1K 碳纤维机织织物制成的 CFRP 相比,其强度更稳定(根据该公司的内部研究)。此外,帝人特殊的丝束铺展技术效率高,使织物成本低于传统的 1K 碳纤维机织织物。此外,尽管使用 3K 纱线(200g/m 2),帝人仍将重量减轻了 35%,与使用 1K 纱线(125g/m 2)制成的织物相同。帝人现在将向工业和体育产品制造商推销其新面料。加上帝人产品组合中的其他铺展丝束碳纤维机织织物,该公司的目标是在 2030 财年实现 20 亿日元的销售额。展望未来,帝人将继续通过其他创新、高性能材料和解决方案加强其碳纤维产品线,并秉持成为一家支持未来社会的公司这一长期愿景。
在神经科学中,对织物皮肤相互作用期间感觉知觉的精确评估仍然很少。本研究旨在通过脑电图(EEG)光谱强度研究对织物刺激的皮质感觉反应,并评估EEG频带,传统的主观问题汇总和材料的物理特性之间的关系。招募了十二名健康的成年参与者,以测试三种具有不同纺织品组成的织物1)棉花,2)尼龙和3)聚酯和羊毛。通过织物触摸测试仪(FTT)定量评估织物的物理特性。邀请受试者通过主观问卷和客观的脑电图记录来评估织物样品的感觉知觉。响应于不同的织物刺激而获得了theta和伽马条带的脑电图和伽马条带的显着差异(p <0.05)。theta和伽马力表现出与问卷评估的大多数主观感觉和FTT织物的物理特性(p <0.05)的相关性。EEG光谱分析可以用于歧视不同纺织品组成的织物刺激,因此表明织物刺激过程中的感觉感知。这一发现可能为通过EEG光谱分析提供进一步探索感知感知的证据,这可以应用于对未来假体中皮肤触觉的脑发生者的研究以及对行业中感觉知觉的自动检测。
为了克服气味问题,抑制了汗液被细菌降解。在本研究中,改进的复合凝聚技术涉及纳米胶囊的形成,纳米胶囊中储存了抗菌和芳香化合物。改进的复合凝聚技术需要高速混合溶液以生产纳米胶囊。在本研究中,海藻酸钠、明胶和阿拉伯胶被用作壁材。芦荟和薄荷精油被用作核心,其重量与壁材相等。通过傅里叶变换红外光谱 (FTIR)、扫描电子显微镜 (SEM)、甲醛释放测试和 AATCC 100 抗菌活性测试对合成纳米胶囊制备的涂层样品进行表征,以验证具有抗菌和芳香特性的纳米胶囊的形成。