Shahid Malik博士助理教授教授传感器,仪器和网络物理系统工程,IIT Delhi Shahid.malik@sense.iitd.ac.in
光纤和灵敏的薄膜涂料材料,以开发多种化学传感平台。我们利用了逐层合成技术,以及特定的治疗后方法,以创建高效的非孔金属有机框架(MOFS),特别是ZIF-8,范围从纳米尺度到微米比例(800 nm至110μm)。此外,我们在厚度为25μm和50μm的单模纤维(SMF)的两侧成功培养了ZIF-8。在一个单独的实验中,我们成功地在光纤的一侧生长了ZIF-8,达到10μm的厚度。传感器对乙醇表现出显着的敏感性,随着乙醇浓度从30 ppm增加到70 ppm,边缘谷从1602 nm转移到1606.8 nm。减少MOF涂层的厚度导致了响应和恢复时间的显着改善。具体来说,对于10μm的腔长,响应时间降至17秒左右,恢复时间降至50秒,而110μm的腔体需要1分钟才能响应,并且在室温下恢复了4分钟。索引项 - 金属有机框架,外部Fabry Perot干涉仪(EFPI),光纤,气体传感器,光传感器。
摘要。这项研究研究了可持续农业领域的可生物降解聚合物纳米复合材料的生产,特征和可能的用途。通过对实验数据进行彻底检查,已经澄清了大量发现。组成分析显示,各种纳米复合材料的聚合物类型和纳米列量的差异。基于PLA的纳米复合材料具有最大的聚合物含量,其次是PHA,PBS和PCL。比较机械测试表明,与其他聚合物相比,基于PBS的纳米复合材具有更大的拉伸强度,Young的模量和休息时的伸长。对降解率的研究表明,纳米复合材料具有不同水平的生物降解性。基于PCL的纳米复合材料的降解率最慢,而基于PLA的纳米复合材料的降解率最高。此外,养分释放数据显示了释放氮,磷和钾的速率变化。基于PBS的纳米复合材料表现出有效的养分向植物递送。结果强调了可生物降解的聚合物纳米复合材料作为可持续农业应用的适应性材料的希望,例如覆盖膜,种子涂料,受控释放释放肥料和土壤补充剂。未来研究的潜在领域,包括增强生产技术,研究创新的纳米填料,以及评估在现实世界中纳米复合材料的性能。可生物降解的聚合物纳米复合材料有可能增强可持续性
摘要。功能梯度材料 (FGM) 是材料科学和工程领域的一项了不起的发明,它具有独特的性能,可用于各种应用。由于能够逐渐改变材料的成分、微观结构或机械性能等特性,FGM 具有无与伦比的适应性,使其适用于各种高强度应用。制造 FGM 的新方法之一是对粉末材料使用严重塑性变形 (SPD) 技术。粉末的 SPD 涉及几个关键步骤;该过程从选择具有不同成分和相的材料开始,然后混合粉末、冷压、SPD 方法,以及(如果需要)热处理。该过程通过表征和测试完成,以评估最终形成的 FGM 的微观结构和特性。FGM 将继续改变材料工程并推动其在许多工程领域和行业中的应用界限,因为它们表现出提高效率、耐用性和性能等有吸引力的能力。因此,本文探讨了通过 SPD 制造 FGM 的过程,并强调了其在 FGM 生产中的重要性和未来趋势。
摘要:在这项工作中,准备一种新型的聚多巴胺/还原的石墨烯(PDA/RGO)纳米滤膜,以在碱环境下有效且稳定地去除放射性斜质离子。通过掺入PDA和热还原处理,不仅可以适当调节氧化石墨烯(GO)纳米片的间间距,而且还达到了改进的抗流变特性。GO的剂量,与PDA的反应时间,PDA与GO的质量比以及热处理温度已被优化,以实现高性能PDA/RGO膜。所得的PDA/RGO复合膜在pH 11时表现出极好的长期稳定性,并保持稳定的腹膜抑制超过90%。此外,PDA/RGO膜的分离机制已被系统地研究,并确定为电荷排斥和大小排除的协同作用。结果表明,PDA/RGO可以被视为将SR 2+离子与核工业废水分离的有前途的候选人。
宽带盖材料中的单光子发射器(SPE)代表了一个吸引人的平台,用于开发在室温下运行的单光子源。III组二硝酸盐先前已被证明具有有效的SPE,这些SPE归因于材料的大带隙内的深度能级,其构型与钻石的广泛研究的颜色中心相似。最近已经证明了氮和氮化铝(ALN)内的缺陷中心的抗束发射。由于III-硝酸盐与洁净室过程的兼容性,这种缺陷的性质和形成它们的最佳条件尚未完全理解,虽然特别有趣。 在这里,我们通过热退火和共聚焦显微镜测量的亚分步上研究了商业Aln Epilayer上的Al植入。 我们观察到发射器的密度的依赖性依赖性增加,从而导致在最大植入量的情况下创建合奏。 在600℃下退火导致SPES形成最大的最佳产量,而在较低的静电液处则观察到SPE密度的显着降低。 这些发现表明,空缺形成的机制在固体状态下SPE的缺陷工程中的发射器和开放诱人的观点中起着关键作用。虽然特别有趣。在这里,我们通过热退火和共聚焦显微镜测量的亚分步上研究了商业Aln Epilayer上的Al植入。我们观察到发射器的密度的依赖性依赖性增加,从而导致在最大植入量的情况下创建合奏。在600℃下退火导致SPES形成最大的最佳产量,而在较低的静电液处则观察到SPE密度的显着降低。这些发现表明,空缺形成的机制在固体状态下SPE的缺陷工程中的发射器和开放诱人的观点中起着关键作用。
6 美国国家航空航天局 (NASA),华盛顿特区 20024 通讯作者:Yupeng Chen 博士,康涅狄格大学副教授,yupeng.chen@uconn.edu 摘要 纳米材料的空间制造是一个很有前途的概念,但成功的例子有限。用于治疗输送和组织再生的受 DNA 启发的 Janus 基纳米材料 (JBN) 是通过在环境温度下在水中受控的自组装过程制造的,非常适合空间制造。我们在 Axiom-2 (Ax-2) 任务期间首次设计并完成了 JBN 的轨道生产,展示了纳米材料的空间制造的巨大前景和优势。内容纳米材料技术在治疗应用方面具有巨大的潜力,从创建模拟天然细胞外基质 (ECM) 支架的仿生支架用于组织工程到作为再生医学的 RNA 和药物的输送 1,2。目前,由于诸如纳米制造的复杂性和成本等各种问题,许多纳米技术应用并不适合生物医学应用。将这些工艺扩大到商业用途可能具有挑战性,并且很难获得一致的结果,从而限制了它们的可重复性。另一方面,Janus 基纳米材料 (JBN) 的制造简单,并且可扩展性和可重复性很快。与蛋白质结晶 3 类似,由于重力,地球上 JBN 的形成受到限制,因此形成的链是不均匀的,并且药物负载效率不理想。在太空中,重力不足会影响 JBN 的沉降,这既可以增加均匀性,又可以影响其作为药物输送载体的性能。JBN 已成为解决当前治疗应用缺点的一种有前途的替代方案。这些 JBN 由模仿 DNA 碱基对的小分子组成,通过氢键和碱基堆叠自组装成纳米管。 JBN 的结构依赖于数万个 Janus 碱基单元之间的非共价相互作用,每个碱基单元的分子量低于 400 Da 4,5 。这些 JBN 通过仿生过程在室温下组装,对设备要求极低,在 JBN 过程中无需催化剂或交联剂
推荐引用推荐引用James,Winervil,“制造压力和NMC阴极组成对LPSCL电解质的影响,以改善固态电池性能”(2023年)。论文。罗切斯特技术学院。从
1 马来西亚雪兰莪州 Jenjarom 42610,MAHSA 大学药学院; joanne121700@gmail.com (杰里科); drwanazizi@ucmi.edu.my (WMAWS); salah_alsh@outlook.com (SAA) 2 马来西亚国际医药大学学院药学院,吉隆坡 68100,雪兰莪,马来西亚 3 马来西亚国立大学医学院寄生虫学和医学昆虫学系,Jalan Yaacob Latif,吉隆坡 56000,雪兰莪,马来西亚 4 莫纳什大学 Jeffrey Cheah 医学与健康科学学院药理学系,Jalan Lagoon Selatan,Bandar Sunway 47500,雪兰莪,马来西亚 5 跨学科研究中心,药理学系,萨维塔牙科学院,萨维塔医学和技术科学研究所,萨维塔大学,钦奈 600077,泰米尔纳德邦,印度; subramaniyan.vetriselvan@monash.edu * 通信地址:aphdukm@gmail.com (AKA); vinoth@ukm.edu.my (VK) † 这些作者对这项工作做出了同等贡献。
摘要:在这项研究中,开发了使用ZnO和还原氧化石墨烯(RGO)复合材料的室温氨气传感器。传感器制造涉及反向偏移和静电喷雾沉积(ESD)技术的创新应用来创建ZnO/RGO传感平台。使用XRD,FT-IR,FESEM,EDS和XP对所得材料的结构和化学特性进行了全面分析,并通过UV-臭氧处理实现了RGO降低。电性能,表明由于紫外线处理而引起的电导率增强,并提高了ZnO -RGO异质结的形成带来的电荷迁移率。暴露于氨气,导致传感器的响应性增加,较长的紫外线治疗持续时间提高了较高的敏感性。此外,测量了响应和恢复时间,10分钟的紫外线处理的传感器显示出最佳的响应能力。绩效评估显示对氨浓度的线性响应性具有高R 2值。与丙酮和CO气体相比,传感器还表现出对氨的特殊选择性,使其成为氨气检测的有前途的候选者。这项研究显示了基于ZnO/RGO的氨气传感器的出色性能和潜在应用,这对气体检测领域有很大的贡献。