水在创造和维持生命方面发挥着重要作用,可视为地球上最重要的分子。地球上的水以液态和结晶冰的形式存在,但宇宙中的大部分水以无定形状态存在于星际颗粒表面 1 。第一种人造无定形水于 1935 年通过气相沉积法制成 2 ,但至今,无定形水的最基本特性之一:玻璃化转变温度,仍不清楚。根据制备方法 3 ,无定形水有多种形式。无定形水是通过压缩冰 I h 以获得高密度无定形形式 (HDA) 4 而产生的。随后,通过在环境压力下重新加热,可以将这种 HDA 形式转化为低密度无定形形式 (LDA)。另一种通常称为无定形固体水 (ASW) 的形式可以通过气相沉积法产生,存在于星际尘埃颗粒中 1 。还可以通过在预冷至 77 K 5 的 Cu 基板上沉积蒸汽,在实验室中生成和研究 ASW。最后,通过将悬浮的液态水滴以超音速喷射到预冷至 77 K 6 的 Cu 基板上,冷却可生成超淬火玻璃水 (HGW)。这些非晶态水是否可以正式被视为玻璃状,取决于它们是否表现出可测量的玻璃化转变。在这方面,水的玻璃化转变话题已经陷入争议超过四十年 7-14 。根据对退火 HGW 的直接量热测量,水的玻璃化转变温度 T g 为 136 K 已被广泛接受 6 。还发现该值与二元水溶液的 T g 外推一致 7 。然而,后来有人认为,根据对多个超淬玻璃的预 T g 放热曲线的测量,正确的 T g 应该更接近 165 K 10 。然后得出结论,由于在以接近 20 K/min 的常规速率加热时快速结晶,因此无法直接测量非晶态水的 T g 。进一步有人认为,在 136 K 观察到的吸热实际上是先前退火程序产生的阴影 T g 11 。这与以下观察结果一致:136 K 下微弱吸热的幅度只是预期加热幅度的一小部分
胃癌是全球第三大癌症死亡原因(1)。大多数胃癌是在晚期才被诊断出来,因为其症状和体征往往不明显且无特异性,导致整体预后不良,而在早期发现的情况下,5 年生存率可超过 90%(2-4)。内镜检查仍被认为是检测 EGC 最有效的方法(5)。然而,早期胃癌(EGC)特别难以识别,因为它通常表现为细微隆起或凹陷以及淡淡的红色,很可能被识别为正常粘膜或胃炎。此外,胃壁内的侵入深度也很难预测。10 项涉及 3,787 名接受上消化道内镜检查的患者的研究显示在诊断前 3 年内上消化道癌症的漏诊率为 11.3%(6)。一项涉及 2,153 例病变图像的荟萃分析显示,白光成像 (WLI) 内镜诊断 EGC 的受试者工作特征曲线下面积 (AUC) 仅为 0.48 (7)。近十年来,人工智能 (AI) 在医学中的应用引起了广泛关注,人工智能辅助内镜诊断是研究的热点。人工智能是指计算机执行与智能生物相关的任务的能力,例如模仿人类的认知能力的“学习”功能 (8)。人工智能的子领域包含机器学习和深度学习(图 1)。机器学习这个术语最初由 Arthur Samuel 于 1959 年创造,是计算机科学的一个领域,即系统能够在没有特定程序的情况下从输入数据中“学习”的能力 (9)。分类模型训练中常见的机器学习方法包括集成树、决策树、支持向量机、k近邻等(10)。深度学习最初于1998年应用于图像处理领域,是指在用于特征提取和转换的机器学习算法的基础上,在非线性处理中应用各层(11)。神经网络与人脑相似,特别模仿紧密相连的神经元来识别模式、提取特征或“学习”输入数据以预测结果(12)。不同的模型训练范式被称为“神经网络”(13)。对于标准内窥镜图像,已经推荐了几种用于自动检测早期胃癌的计算机辅助检测(CAD)算法。原有图像分类模型的性能提升主要依赖于视觉特征和大规模数据集,这在 EGC 中很难实现
詹姆斯·韦伯太空望远镜揭开了最伟大的起源故事。韦伯是美国宇航局最新的顶级太空科学天文台——注定会像它的前身哈勃一样家喻户晓。这是美国宇航局科学的阿波罗时刻:韦伯将从根本上改变我们对宇宙的理解。它可以观察整个宇宙,从行星到恒星,从星云到星系甚至更远——帮助科学家揭开遥远宇宙以及离地球更近的系外行星的秘密。韦伯可以以精致的新细节探索我们太阳系的居民,并搜索有史以来第一个星系的微弱信号。从新形成的恒星到吞噬黑洞,韦伯将揭示所有这些以及更多。韦伯的设计旨在建立在其他航天器的突破性发现之上,例如哈勃太空望远镜和斯皮策太空望远镜。哈勃用可见光和紫外光观察宇宙,而韦伯则专注于红外线,这种波长对于透过气体和尘埃观察远处的物体非常重要。继斯皮策在红外领域开辟道路之后,韦伯将凭借面积几乎大 60 倍的主镜带我们走得更远。最后,韦伯的镜子不仅具有哈勃惊人的分辨率,而且灵敏度更高,并且可以在太空中完全调节。韦伯的大镜子和先进的仪器套件受到五层遮阳板的保护,遮阳板展开后大小可与网球场相当。整个天文台折叠起来以装入运载火箭,并在太空中展开。这种复杂的部署顺序从未在太空望远镜上尝试过,韦伯的惊人工程设计包括许多突破技术界限的创新。韦伯是人类智慧的壮举。该任务历时二十多年,来自 14 个国家和 29 个美国州的数千名科学家、工程师和其他专业人士为此做出了贡献。韦伯望远镜的发射是一个关键时刻,彰显了 NASA 及其合作伙伴欧洲航天局 (ESA) 和加拿大航天局 (CSA) 的奉献精神、创新精神和雄心壮志,但这仅仅是个开始。该天文台在太空中运行的六个月是一个令人兴奋但又令人紧张的时刻,在此期间,数千个部件和序列都必须在距离地球近一百万英里的地方正确地协同工作。当望远镜开始收集数据时,这一阶段达到高潮——这对任务、NASA、美国和全世界来说都是一个真正意义重大的庆典。基本天文学问题推动了韦伯望远镜独特的设计、尖端的能力和无与伦比的红外灵敏度——所有这些都旨在提供宇宙的新视角,并以非凡的科学发现激发我们的想象力。这是我们在了解人类在浩瀚宇宙中的地位方面向前迈出的一大步。
在空间风化的样品中应用计算机视觉算法来自动化太阳粒子轨道分析。K. Heller 1,J。A. McFadden 1,M。S. Thompson 1。 1地球,大气和行星科学系,普渡大学,西拉斐特,47907年(mcfadde8@purdue.edu)。 简介:暴露于太阳风辐射和其他高能离子流的来源导致在太阳系上无空体表面上土壤的空间风化[1,2]。 尤其是,太阳能耀斑的太阳能颗粒(SEP)对晶粒的辐照,可以将毫米穿透到地表岩石上,从而导致晶粒内部晶体结构损伤的线条。 这些SEP轨道可以通过对透射电子显微镜(TEM)中土壤样品的分析来揭示。 通过TEM图像测得的晶粒中这些SEP轨道的密度可用于基于校准的生产速率生成暴露时间表[3]。 对这些SEP轨道密度的分析可在无气体表面上的太空风化和太阳辐射过程以及雷果石混合和重新加工时间表上产生宝贵的见解。 直到最近,对TEM图像中的SEP轨道的识别和分析主要是手工执行的,这是一种耗时的实践。 但是,机器学习领域(ML)和计算机视觉领域的进步使机器的视觉能力能够通过适当的神经网络设计和培训数据匹配和超越人类的能力[4,5,6]。 这两个模型在结构上是相同的,但在培训数据上却有所不同。A. McFadden 1,M。S. Thompson 1。1地球,大气和行星科学系,普渡大学,西拉斐特,47907年(mcfadde8@purdue.edu)。简介:暴露于太阳风辐射和其他高能离子流的来源导致在太阳系上无空体表面上土壤的空间风化[1,2]。尤其是,太阳能耀斑的太阳能颗粒(SEP)对晶粒的辐照,可以将毫米穿透到地表岩石上,从而导致晶粒内部晶体结构损伤的线条。这些SEP轨道可以通过对透射电子显微镜(TEM)中土壤样品的分析来揭示。通过TEM图像测得的晶粒中这些SEP轨道的密度可用于基于校准的生产速率生成暴露时间表[3]。对这些SEP轨道密度的分析可在无气体表面上的太空风化和太阳辐射过程以及雷果石混合和重新加工时间表上产生宝贵的见解。直到最近,对TEM图像中的SEP轨道的识别和分析主要是手工执行的,这是一种耗时的实践。但是,机器学习领域(ML)和计算机视觉领域的进步使机器的视觉能力能够通过适当的神经网络设计和培训数据匹配和超越人类的能力[4,5,6]。这两个模型在结构上是相同的,但在培训数据上却有所不同。在这里,我们应用这些ML技术来开发一个原型自动化程序,该程序可以自动检测和分析TEM图像中的SEP轨道,从而使未知样本中的SEP轨道更有效,更准确地注释。方法:机器智能程序(“模型”)旨在查找和计算提供的TEM图像中的所有SEP轨道,包括潜在的微弱或“隐形”轨道。由于轨迹而言,由于主要是与背景材料不同的强度线段的线段,该模型旨在识别线性强度差异的区域。两种单独的型号经过训练以提高性能 - 一种在较暗的背景(LOD)上搜索较轻的曲目,而一种搜索较轻的背景(DOL)上的较暗轨道(DOL)。拆分模型的决定在很大程度上旨在改善训练时间和模型性能,因为示例往往由LOD或DOL轨道组成。因此,将模型拆分可改善训练时间并减少处理时间,因为训练集和应用的差异减少为更简单,较小的模型提供了空间。此外,这使该模型可以应用于两种不同类型的扫描TEM(STEM)成像模式:深色场(DF),其中SEP轨道显得比周围的晶体更明亮,而明亮场(BF),其中SEP轨道显得比周围的晶体更暗。由于计算机以抽象的结构可视化数据,分析是按像素度量进行的,而不是与测量相关的
•脱水(体内水和盐的损失),这可能会使您感到头晕,微弱,头晕或虚弱,尤其是在站起来(正常的低血压)。有报道称2型糖尿病患者突然肾脏受伤。,如果您服用药物降低血压,包括水药(利尿剂),您可能会脱水的风险更高;年龄65岁或以上;处于低盐饮食或肾脏问题。与您的医疗保健提供者谈谈您可以做些什么来防止脱水,包括每天应该喝多少液体。如果您减少了饮用的食物或液体的量,或者如果您经历了呕吐或腹泻•严重的尿路感染(UTI),则立即致电您的医疗保健提供者,有些会导致住院治疗,发生在接受Farxiga的人中。告诉您的医疗保健提供者是否有任何UTI的迹象或症状,包括尿液时会燃烧的感觉,经常需要小便,需要立即排尿,胃部疼痛(骨盆)(骨盆)或尿液中的疼痛或随着发烧,腰痛,腰痛或毒液的较低(如果您的血液)可能会导致较低的糖(hypogemia a ground),如果您会出现较低的血液(hardogemia),可能会造成较低的血液(hardogemia)。磺酰脲或胰岛素。低血糖的症状包括摇晃,出汗,快速心跳,头晕,饥饿,头痛和烦躁。遵循您的医疗保健提供者的指示,以治疗低血糖•在生殖器及其周围地区的皮肤下细菌感染。这种感染发生在男女中,可能导致住院,手术和死亡。罕见但严重的感染在生殖器的皮肤及其周围区域造成严重的组织损害,而Farxiga发生了。如果您发烧或感到非常虚弱,疲倦或不舒服,请立即寻求医疗救助,并且您还会在生殖器及其周围的皮肤中产生任何疼痛,肿胀,肿胀或发红••服用Farxiga的女性的阴道酵母菌感染。与您的医疗保健提供者交谈,如果您经历着阴道气味,白色或淡黄色的阴道放电(排出可能是块状或看起来像奶酪)或阴道瘙痒••服用farxiga的男性阴茎周围的皮肤(Balanitis)周围的皮肤感染。如果您经历了阴茎发红,瘙痒或肿胀,请与您的医疗保健提供者交谈;阴茎皮疹;阴茎的臭味出血;或阴茎周围的皮肤疼痛。某些未割伤的男人可能会肿胀阴茎,这使得很难将皮肤周围的皮肤拉回法xiga最常见的副作用,包括阴道或阴茎的酵母菌感染,排尿的变化,包括迫切需要更频繁地,大量的夜间或在夜间
荧光显微镜是细胞生物学1 - 3中普遍存在的表征技术。活细胞的荧光标记不仅可以专门突出生物分子,细胞器或细胞室,还可以绘制物理化学量,例如离子浓度,动作电位,pH,pH,分子方向等。在过去的二十年中,荧光显微镜经历了深刻的改进,并开发了许多变体,从而在空间分辨率,速度,信号噪声比率,特异性,标记技术和3D成像方面推动了成像的极限。然而,荧光显微镜受到限制。它本质上仍然是侵入性的,因为它需要用分子染料或蛋白质4将样品标记。此外,由于荧光标签的光漂白和光吸毒性,无法任意长时间进行实时观察。最后,荧光分子并不总是忠实地标记它们应该的内容,而伪影有时会发生5。定量相显微镜(QPM)是另一个专门针对细胞生物学领域6、7的成像技术家族。与荧光显微镜不同,QPM技术不含标签且非特异性。它们仅对样品的折射率敏感。他们的主要好处是与明亮的场显微镜相比,提供更好的对比度。由于QPM不含标签,因此它们不会遭受与荧光显微镜相关的上述缺陷。但是,QPM本质上不是特定的。此外,生物学介质的折射率和质量密度之间存在的密切关系为QPM提供了QPM的独特能力,可以测量和映射培养物中细胞的质量,从而实现细胞生长的定量监测,以及在第8-11级的亚细胞级别的质量转运。尤其没有任何分子探针的光漂白,并且如果使用红色或红外照明,可以取消光毒性,以非侵入性的方式使图像获取为任意长时间的习得12。一个人无法选择细胞的功能来突出显示,尽管最近一些涉及机器学习的作品试图提高此限制13,14。荧光显微镜和QPM因此以互补方法的形式出现,并将它们结合起来提供多种好处。OPD图像显示的细节在荧光图像中无法看到,反之亦然。OPD揭示了细胞中的所有内容,尤其是细胞的部分未荧光标记的部分。例如,它可以清楚地突出片状膜,核,囊泡或线粒体。相反,荧光受特异性受益,因为它仅突出显示细胞中标记的物体,尤其是对比度太低的对象,无法在OPD图像上看到。然而,荧光显微镜和QPM很少相关。然而,将荧光显微镜与QPM技术偶联至少具有三个重要应用:(i)它将提供生物分子或细胞器的空间分布(例如微管,肌动蛋白,线粒体等)或物理化学参数与细胞的总体形态相关,并具有出色的对比度,包括细胞的微弱部分,例如层状脂肪膜。我们设想重要的应用,例如在细胞内贩运研究中;
上下文。詹姆斯·韦伯(James Webb)太空望远镜(JWST)捕获了有史以来最清晰的红外图像,这是一个原型中等辐照的光子主导区域(PDR),它完全代表了大多数UV-rumumination-the Milecular Soleculin ass the Milecular速度和星星形成的星座。目标。我们研究了一个巨大的恒星在分子云边缘发出的远 - 硫酸酯(FUV)辐射的影响,就光蒸发,电离,解离,H 2激发和粉尘加热而言。我们还旨在限制PDR边缘的结构及其照明条件。方法。我们使用Nircam和Miri获得了17个宽带和6个窄带地图,在宽光谱范围为0.7至28 µm。我们绘制了灰尘发射,包括芳香和脂肪族红外(IR)带,散射光和几个气相线(例如,Paα,Brα,H 2 1-0 S(1)在2.12 µm时)。为了进行分析,我们还将1.1和1.6 µm的两个HST-WFC3图与HS-Stis光谱观测到Hα线相关联。结果。我们以0.1至1''的角度分辨率探测了马头边缘的结构,并解决了其空间复杂性(相当于2×10-4至2×10 - 3 PC或40至400 au,在400 pc的距离处)。我们检测到一个微弱的横纹特征网络,该网络垂直于PDR前面延伸至Nircam的H II区域,Miri和Miri对纳米谷物发射敏感的过滤器以及1.1 µm的HST滤波器中的敏感,从而散布于较大的晶粒散布的光线。这确实可能是第一次检测到蒸发流中灰尘颗粒的夹带。在PDR的照明边缘,H 2的1-0 s(1)线的丝状结构在尺度上呈现出众多尖锐的子结构。与尘埃发射相比,沿边缘沿狭窄的层(宽度约为1'',对应于2×10 - 3 pc或400 au),与灰尘发射相比,H 2发射过量。电离正面和解离前在PDR的外边缘后面出现在距离1-2'',并且似乎在空间上重合,表明中性原子层的厚度很小(低于100 au)。所有宽带图都呈现出照明边缘和内部区域之间的颜色变化。在与天空平面相比,照亮的星σ-orionis略有倾斜的情况下,这可以通过灰尘衰减来解释,从而使马头以倾斜的角度从后面照亮。与Hα,PAα和BRα线中测得的排放的预测偏差也表明灰尘衰减。使用非常简单的模型,我们使用数据来得出灭绝曲线的主要光谱特征。在3 µm处的灭绝少量可能归因于在密集区域形成的晶粒上冰冷的H 2 O层。我们还将衰减曲线从PDR衍生为0.7至25 µm。在跨越马头内部区域的所有视线中,尤其是在IR峰位置周围,在JWST的整个光谱范围内,灰尘衰减似乎不可忽略。
执行摘要 证据监测选项要求的背景 威尔士自然资源部代表威尔士政府实施国家栖息地创建计划。该计划的目的是确定栖息地创建和及时提供环境补偿的机会,以促进海岸线管理计划的实施和威尔士 Natura 2000 网络的保护。国家栖息地创建计划主要关注沿海地区的影响,采取“保持路线”政策,并为洪水风险管理当局提供补偿性栖息地,但也可以成为第三方计划的补偿交付机制,这些计划在特殊情况下须遵守合作协议情况。国家栖息地创建计划负责提供足够数量和质量的适当补偿栖息地,以抵消“沿海挤压”1 对 Natura 2000 场地系列完整性的影响。因此,国家栖息地创建计划的交付是由以下信息通知的。海岸线管理计划(以及迪伊和塞文河口的洪水风险管理策略)和栖息地法规评估的预计损失。为了向威尔士政府证明国家栖息地创建计划能够管理栖息地损失和收益、破坏风险和资源过度分配风险的平衡,重要的是要确认创建措施具有必要的规模和质量以及 t
技术创新和环保运动早已密不可分,后者的灵感来自卫星图像,这些图像展示了在太阳系 60 亿公里范围内拍摄的地球照片和图像。在卫星被发射到地球轨道之前,我们对地球的有限概念并不是一个单一的实体,我们当然也没有它在太空中的背景。看着地球的卫星照片让我们意识到,虽然我们似乎在这个巨大的、充满敌意的虚空中孤身一人,但事实上,我们都在一起。现在,从轨道上看地球已经很常见了,但技术设备仍在改变我们对地球的看法,它总是让我们惊叹不已。我们的星球确实是一片仙境,但我们对自己对地球生物圈所做的事情却一无所知,地球生物圈比我们在太阳系中可能看到的任何东西都要复杂得多,而且相互依存性也惊人地强。为了确保地球安全,我们需要实现世界各国政府在 2010 年会议上达成的雄心勃勃的目标,即到 2020 年保护至少 17% 的陆地和 10% 的海洋区域。目前各国政府尚未实现这些目标,分别只保护了 14.7% 和 3.6%。然而,一些行星科学家担心,这些目标可能不是我们维持地球生态系统正常运转所需要的。他们认为,我们必须创造一个人工泡沫来取代这个美丽但受损的自然系统。因此,人类开始涉足生物圈建设领域。也许最令人振奋的实验发生在 1991 年,当时一个由八名机组人员组成的团队进入了位于亚利桑那州沙漠中部的一个名为“生物圈 2 号”(生物圈 1 号当然是地球)的院落。这项为期两年的实验旨在成为一个拥有 3,800 个物种的自给自足的微型地球复制品,但尽管所有八名机组人员都幸存了下来,但这是一次艰难的经历。有人不得不离开基地接受紧急医疗救治。在高碳水平下,红薯比大多数农作物生长得好得多,以至于船员的皮肤因为吃了太多红薯而染上了淡淡的橙色。40% 的物种灭绝了。船员们用“地狱般的”一词来形容泡泡里的生活,因为这里到处都是入侵的蚂蚁和蟑螂,船员们想要保留的物种也消失了。最先消失的物种之一是蜜蜂,建造生物圈的人类并不知道,由于生物圈内没有紫外线,蜜蜂无法看见或导航。总而言之,对于生活在那里的大多数物种来说,实验结果并不理想,这凸显了一个事实,即在微观世界中创造生命面临着许多复杂的挑战,即使在我们自己的星球上也是如此。这个看似非常受控的实验仍然存在生物多样性问题。这种努力的历史为我们提供了宝贵的教训,让我们认识到自己构建生态系统的局限性。我们成功的机会取决于利用现有资源并与自然合作,而不是试图重建它。这并不是说探索可能性和进行诸如生物圈 2 号之类的实验在解决问题时对我们毫无帮助。恰恰相反。探索的礼物之一是它提出了新的挑战,迫使我们迅速而有创意地解决它们。这种技能对快速变化的地球上的生命有着明显的影响。
请回答以下接收疫苗的人的问题。是否1。今天正在接种病人的人吗?2。是否有Guillian-Barre综合征接种疫苗的人?流感疫苗:3。要接种疫苗的人对氟疫苗的成分过敏?4。过去,要接种疫苗的人过去是否有严重的反应疫苗疫苗?5。要接种疫苗的人在枪击之前,还是在aōer期间,还是昏昏欲睡?6。今天要接种疫苗的人对geƫng今天的射击感到焦虑吗?vid疫苗:7。接种疫苗的人是否曾经收到过一剂COVID-19-19疫苗?哪种产品:________________ 8。该人是否有健康状况或正在接受治疗,使他们适度或严重免疫受损?9。该人是否在造血细胞移植(HCT)或CAR-T细胞疗法之前或期间接受了COVID-19-19疫苗?10。接种疫苗的人是否对COVID-19疫苗的组成部分过敏?11。接种疫苗的人是否对先前剂量的Covid-19疫苗过敏?12。接种疫苗的人对疫苗或可注射疗法有严重的过敏性反应?13。要接种疫苗的人有肌无力的病史还是心包?14。15。16。17。该人是否有通过血栓形成和血栓形成和血小板减少症(例如肝素引起的血小板减少症)定义的免疫介导的综合征的病史?该人有血小板减少综合征(TTS)的血栓形成病史吗?自从接受Covid-19疫苗以来,该人是否接受过血肿细胞移植(HCT)或CAR-T细胞治疗?该人在过去三个月内有COVID-19疾病的病史吗?确认,授权和分配利益我在此表格上的签名表明我已在雅典城市县卫生部(ACCHD)授权人员要求疫苗管理。我同意将疫苗的行政管理授予该表格上指定的人,我有权给予此同意。我已经阅读或向我解释了疫苗信息声明(VIS)的信息,并相信我了解疫苗的好处和风险。我有机会询问有关提供给我的服务的问题。我的签名表明我已经为隐私pracces的acchd note of a of to录制了我的副本。我授权使用和/或披露我的健康信息进行治疗,付款或医疗保健歌剧。我允许在此表格上命名的人的immunizaɵon记录,或者在此表格上授予其命名的人,或者在要求其医师和/或学校中授予该记录。我同意免疫传输和其他相关信息的信息传播到全州范围内的ImmunizaɵonInformaɵon系统(ImpactSIIS)和ACCHD的电子病历。我授权ACCHD发布有关上述人员的信息,以向我提供给我的第三方付款人。我直接要求我的付款人付款给我提供的服务。我允许允许ACCHD与所提供的编号有关约会,日程安排,信息和公告的联系。__________________________________________________________________________________________________________________________________________________________________________ ***请填写表格后面的保险信息***
