人们认为,音乐等听觉符号系统的代际稳定性依赖于大脑过程,这些过程允许忠实地传递复杂的声音。人们对支持这种能力的人类大脑的功能和结构方面知之甚少,一些研究表明听觉网络的双侧组织是假定的神经基础。在这里,我们通过检查听觉皮层之间左右神经解剖不对称的作用进一步检验了这一假设。我们从大量参与者(非音乐家)收集了神经解剖图像,并使用 Freesurfer 的基于表面的形态测量法对其进行了分析。扫描数周后,同样的个体参加了模拟音乐传播的实验室实验:信号游戏。我们发现,人工音调系统的代际传递的高准确性与 Heschl 沟皮层厚度向右不对称的减少有关。我们的研究表明,旋律材料的高保真复制可能依赖于计算神经元资源在半球中的分布程度。我们的数据进一步支持了大脑半球间组织在听觉符号系统的文化传播和进化中的作用。
基于门的通用量子计算是根据两种类型的操作来制定的:通常易于实现的局部单量门门,而两个Qubit的纠缠大门,其忠实的实施仍然是主要的实验挑战之一,因为它需要单个系统之间的受控相互作用。为了充分利用量子硬件,以最有效的方式处理信息至关重要。一个有希望的途径是将较高的量子系统(Qudits)用作量子信息的乐趣单位,以用Qudit-Local Gates替换Qubit-Loctangling Gates的一小部分。在这里,我们展示了如何通过使用QUDIT编码来显着低估多Qubit电路的复杂性,我们通过考虑具有确切已知(多Qubit)栅极组合性的示例性cirits来量化这些编码。我们讨论了电路压缩的一般原理,在可实现的优势上得出上限和下限,并突出了纠缠和可用门集的关键作用。针对Photonic和捕获离子实施的显式实验方案,并证明了两种平台的电路性能都有显着的表达增益。
尽管人们充分认识到 3 d 过渡金属氧化物 (TMO) 准粒子性质的 GW 计算难度,但涉及 4 d 电子的 TMO 可能被视为边界系统,且受到的关注较少。这里我们展示了 SrZrO 3 和 BaZrO 3 的准粒子能带结构,这两种相对简单的宽带隙氧化物,尽管具有技术重要性,但对其电子结构的精确计算却很少。我们表明,完全收敛的 GW 计算可以准确预测 4 d TMO 钙钛矿 SrZrO 3 和 BaZrO 3 的准粒子性质,无论起始平均场解是在直接密度泛函理论 (DFT) 中计算还是在 DFT+ U 方法中计算。这与 3 d TMO 钙钛矿 SrTiO 3 和 BaTiO 3 的情况形成了鲜明对比,对于这两者,DFT+ U 方法被证明可以为后续的 GW 计算提供更好的起点。与相当局域化的 3 d 态相比,更扩展的 4 d 轨道似乎可以在 DFT 中使用局域或半局域泛函进行很好的描述。我们的结果再次证明了 GW 方法的准确性和稳健性,前提是可以获得可靠的零阶平均场解,并且结果足够收敛。
法治:法律的可预测性、连续性和连贯性;通过公开可见的程序并忠实地基于法律做出合理的决定。公平正义:司法公正和公正;法院程序的可及性;尊重和有尊严地对待所有人。司法独立:能够伸张正义而不必担心决定会威胁到任期、薪酬或安全;司法机构作为政府的平等部门,在内部治理和管理事务上享有足够的结构自主权。多样性和尊重:法官和雇员队伍反映了其所服务公众的多样性;每个人都受到尊重和尊重的模范工作场所。问责制:严格的行为标准;法律和道德规则的自我执行;公共资金和财产的良好管理;有效和高效地利用资源。卓越:遵守最高的法理和行政标准;有效招聘、培养和留住高素质和多元化的法官和雇员;致力于创新管理和行政;提供足够的财政和其他资源。服务:致力于忠实履行公职;效忠美国宪法和法律;致力于及时有效地满足陪审员、法庭使用者和公众的需求。
成簇的规律间隔短回文重复序列 (CRISPR)/CRISPR-Cas 系统彻底改变了基因编辑,可应用于治疗、诊断、农业和开发疾病模型。然而,CRISPR-Cas 存在脱靶效应——即在使用过程中导致基因组中出现非预期的遗传修饰。在这项工作中,我们提出了 crispr2vec:一种用于嵌入 CRISPR 单向导 RNA (sgRNA) 序列并预测脱靶切割的深度度量学习方法。给定一个固定的靶序列,我们表明我们学习到的嵌入可以忠实地表示潜在的脱靶。我们提出了一种专门针对 CRISPR 序列的新型三重采样策略,可提高嵌入的质量。我们表明,生成的嵌入可推广到不同的脱靶切割检测分析中。最后,我们证明了深度度量学习方法在预测脱靶切割方面的优势,与之前的文献相比,该方法在不同数据集上对可见和未可见的 sgRNA 进行交叉折叠验证。
得益于人工智能和计算几何,高分辨率卫星图像源的增加和可用性的提高使得能够越来越快速地重建忠实的 3D 制图环境,以满足部队训练设备模拟的需求,特别是混合现实可视化。我们开发了一种操作自动化管道,可以从多立体卫星图像中自动生成数字地形模型和正射影像。多立体影像和简单的正射影像也可以生成用于描述遮罩(建筑物、树木)的几何图形所需的额外 3D 矢量资产。此外,我们的管道允许识别屋顶形状和自动对建筑物进行纹理处理,使用一种结合人工智能和程序建模的混合方法。提供以自动方式生成的优化 3D 图块格式(CESIUM 推广的 OGC 标准),可以在各种可视化引擎中大规模传播生成的信息。最后,在混合现实(Microsoft HoloLens 2)的背景下,将虚拟对象集成到真实场景中,可以计算现场场景的掩星。这些进步为快速且经济高效地生成大规模地形提供了突破性技术,为模拟中的自动场景生成(虚幻引擎 5)提供了必要的精度。
摘要。石油和天然气行业在尼日利亚经济中发挥着关键作用,为该国经济做出了重大贡献。然而,油价波动、运营效率低下、环境风险和腐败等挑战削弱了其潜力。本研究考察了 IFRS 6 会计选项与尼日利亚石油和天然气公司的价值相关性之间的关系,重点关注托宾 Q、企业价值、每股收益和市净率等关键财务指标。使用事后研究设计和推断统计技术,分析了 2012 年至 2022 年上市石油和天然气公司的数据。研究结果揭示了将勘探投资转化为公司价值的效率低下,固定资产强度、现金投资和无形资产对市场估值和股本回报的负面影响微不足道。结论是,IFRS 6 下的会计灵活性导致财务报告不一致和投资者怀疑。建议包括完善 IFRS 6 准则,以标准化勘探和评估支出的报告,提高透明度,减少管理层的自由裁量权。此外,还要求专业会计师确保如实反映财务信息,以弥合会计数据与市场认知之间的差距。
摘要量子系统的基础状态的快速而忠实的准备是在基于量子的技术领域中的多个应用程序的具有挑战性但至关重要的任务。的消毒将允许的最大时间窗口限制为实验,以忠实地达到此类所需的状态。这在具有量子相变的系统中特别重要,其中消失的能量差距挑战了绝热的基态制备。我们表明,由在两个不同的外部可调参数下的时间演化组成的BANG-BANG协议允许在进化时间中进行高实现基态制备,而不必应用标准最佳控制技术所需的时间,例如切碎 - 常发送量子量子基量子量子量子。此外,由于它们的变量数量减少,此类BANG -BANG协议非常适合优化任务,从而降低了其他最佳控制协议的高计算成本。我们通过两个范式模型(即Landau – Zener和Lipkin – Meshkov – Glick模型)对这种方法进行基准测试。非常重要的是,我们发现后一个模型的关键基态,即其在临界点处的基态可以在总进化时间内以高填充率制备,该缩放比消失的能量差距慢。
中心粒是动力学的结合位点,对于整个细胞分裂的染色体的忠实隔离至关重要。酵母中的点丝粒由约115 bp的特异性DNA序列编码,而区域的丝粒范围从裂变酵母中的6 - 10 kbp到人类的5 - 10 Mbp。了解中心粒染色质的物理结构(酵母中的圆锥体),定义为姐妹动物学之间的染色质,将提供基本的见解,以了解如何将Centromere DNA编织成僵硬的弹簧,该弹簧能够在有点裂期间能够抵抗微管拉力。围粒粒粒的一个标志是染色体(SMC)蛋白凝聚蛋白和冷凝蛋白的结构维持的富集。基于种群方法的研究(CHIP-SEQ和HI-C)以及实验获得的荧光粒结构的荧光探针图像,以及模拟与实验结果之间的定量比较,我们提出了一种建立姐妹动物学菌之间张力的机制。我们提出,丝粒是一种染色质瓶洗,是通过环状侵入蛋白冷凝蛋白和粘着素而组织的。由于径向环之间的空间排斥力,瓶颈布置提供了一种生物物理手段,可以将周围质粒染色质转化为弹簧。我们认为,瓶刷是染色体组织的组织原则,该原理已从该领域的多种方法中出现。
符合微观世界规律的客观实在的出现一直是长期争论的焦点。近期的方法似乎至少在一个方面达成了共识,即对给定可观测量在物理自由度上的信息进行编码是该可观测量成为物理实在元素的必要条件。以此为基本前提,并受到量子信息论的启发,我们在此建立了量子实在论的公理化——一种与量子理论兼容的实在论概念。我们的策略包括列出一些能够以“度量”独立的方式表征量子实在论的物理驱动原理。我们引入了一些定义单调性和实在论测度的标准,然后在一些著名的信息论中寻找潜在候选者——由冯·诺依曼、雷尼和查利斯熵引起的理论。我们明确地构造了一些熵量词类,其中一些被证明满足所有提出的公理,因此可以作为给定物理可观测量的真实度(或确定性)的忠实估计。希望我们的框架可以为进一步讨论量子力学的基础方面提供正式的基础。
