摘要:鉴于最近人们对纳米长度尺度上的光诱导磁性操控的兴趣日益浓厚,这项工作提出金属团簇是产生全光超快磁化的有前途的基本单元。我们使用时间相关密度泛函理论(TDDFT)在实空间中通过从头算实时(RT)模拟对金属团簇的光磁特性进行了理论研究。通过对原子级精确的简单金属和贵金属团簇中圆偏振激光脉冲等离子体激发的从头算计算,我们讨论了由于光场在共振能量下通过光吸收转移角动量而产生的轨道磁矩。值得注意的是,在近场分析中,我们观察到感应电子密度的自持圆周运动,证实了纳米电流环的存在,由于团簇中的逆法拉第效应(IFE),纳米电流环产生轨道磁矩。研究结果为理解量子多体效应提供了宝贵见解,该效应影响金属团簇中 IFE 介导的光诱导轨道磁性,具体取决于金属团簇的几何形状和化学成分。同时,它们明确展示了利用金属团簇磁化的可能性,为全光磁控领域提供了潜在的应用。
先进电池工程 (BABE) 的电池管理控制系统 ��������������������������������������������������������������60 重型车辆的电池热管理和诊断 – BATMAN ��������������������������������������������������������61 BESTBUS:为 e-BUS 量身定制的延长电池组寿命的解决方案 ��������������������������������������������������������������������������������62 Breathe Life:物理增强型电池寿命控制器 ����������������������������������������������������������������������������������������������������������������63 COBRA – 云端/车载电池剩余使用寿命算法 ����������������������������������������������������������������������������������������64 热管作为汽车电池组设计中的结构和热构件的概念可行性 �� ... ������������������������������������������������������������������������������������������������������������������������������������������67 开发等温控制平台 (ICP) 作为电动汽车用锂电池测试新提议标准的基础 ������������������������������������������������������������������������������������������������������������������������������68 DutyCell:电池级占空比优化 ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������69 EB-Bat – 电子束电池焊接 �� ... ��������������������������������������������������������������������������������������������������������������������������������������������������������������73 i-CoBat:使用合成酯介电液体对电池模块进行浸入式冷却 �� ... PIC-BATT �� ... ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������83 Gamma 项目 �� ...算法 ������������������������������������������������������������������������������������������������������������������������86 SHIELD – 电池健康状态评估,包括电池寿命测定 ����������������������������������������������������������87 TECHNO – 正常运行期间的温度监测、冷却和加热 ������������������������������������������������������������88 开发等温控制平台 (ICP),通过多区域控制精确调节电池温度 �� ... ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������90 第二人生和回收创新项目 ��������������������������������������������������������������������������������������������������91正常运行期间的冷却和加热 ����������������������������������������������������������88 开发等温控制平台 (ICP),通过多区域控制精确调节电池温度 �� ... ����������������������������������������������������������������������91正常运行期间的冷却和加热 ����������������������������������������������������������88 开发等温控制平台 (ICP),通过多区域控制精确调节电池温度 �� ... ����������������������������������������������������������������������91正常运行期间的冷却和加热 ����������������������������������������������������������88 开发等温控制平台 (ICP),通过多区域控制精确调节电池温度 �� ... ����������������������������������������������������������������������91正常运行期间的冷却和加热 ����������������������������������������������������������88 开发等温控制平台 (ICP),通过多区域控制精确调节电池温度 �� ... ����������������������������������������������������������������������91锂离子电池安全性初步可行性研究 �� ... ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������84 LIBRIS 项目 – 锂离子电池安全性研究 ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������85 SAMBA – 智能汽车管理电池算法 �� ... ��������������������������������������������87 TECHNO – 正常运行期间的温度监控、冷却和加热 �����������������������������������������������������88 开发等温控制平台 (ICP),通过多区域控制精确调节电池温度 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������89 WIZer 电池 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������90 第二人生和回收创新项目 ��������������������������������������������������������������������������������������������������91锂离子电池安全性初步可行性研究 �� ... ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������84 LIBRIS 项目 – 锂离子电池安全性研究 ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������85 SAMBA – 智能汽车管理电池算法 �� ... ��������������������������������������������87 TECHNO – 正常运行期间的温度监控、冷却和加热 �����������������������������������������������������88 开发等温控制平台 (ICP),通过多区域控制精确调节电池温度 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������89 WIZer 电池 ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������90 第二人生和回收创新项目 ��������������������������������������������������������������������������������������������������91正常运行期间的冷却和加热 ����������������������������������������������������������88 开发等温控制平台 (ICP),通过多区域控制精确调节电池温度 �� ... ����������������������������������������������������������������������91正常运行期间的冷却和加热 ����������������������������������������������������������88 开发等温控制平台 (ICP),通过多区域控制精确调节电池温度 �� ... ����������������������������������������������������������������������91
世界正在过渡到低碳未来,但运输仍然是英国二氧化碳排放的最大来源,占排放量1的29%。开发低成本,可靠和远程电动汽车是减少这些排放的关键,不仅在汽车领域,而且在航空航天,铁路,海上,高速公路,高速公路车辆和静态存储中的应用中,电池都起着至关重要的作用。英国和欧盟已经建立了销售汽油和柴油车辆的明确日期,这正在推动对电池供电的电动汽车的需求。这种向电气化的未来的过渡将需要多种类型的电池,其中一些尚未想象。因此,必须开发下一代电池技术,以及对新生产过程的探索和降低风险,以确保英国在电池制造和制造中的长期成功。
世界正在向低碳未来转型,但交通运输仍然是英国最大的二氧化碳排放源,占排放量的 29% 1 。开发低成本、可靠且长续航里程的电动汽车是减少这些排放的关键,而电池不仅在汽车领域,而且在航空航天、铁路、船舶、非公路车辆和静态存储等应用领域都发挥着至关重要的作用。英国和欧盟已经明确设定了汽油和柴油汽车的销售截止日期,这推动了对电池供电的电动汽车的需求。向电气化未来的过渡将需要多种类型的电池,其中一些尚未想象到。因此,必须开发下一代电池技术,同时探索和降低新生产工艺的风险,以确保英国在电池制造和汽车制造方面的长期成功。
磁化和光之间的关系一直是过去一个世纪的密集研究的主题。在此,磁化对光极化的影响已得到充分了解。相反,正在研究用极化光的磁性操纵,以实现杂志的全光控制,这是由潜在的Spintronics中潜在的技术实施驱动的。据报道,诸如薄膜和亚微米结构中杂志的单脉冲全光切换之类的发现。 然而,纳米尺度上磁性的局部光学控制的证明仍然难以捉摸。 在这里,证明具有圆形极化飞秒激光脉冲的令人兴奋的金纳米盘可导致超快,局部和确定性控制磁化磁化强度的磁化。 通过利用逆法拉第效应在等离子纳米散发中产生的磁矩来实现此控制。 结果为在纳米级旋转设备中进行轻驱动的控制铺平了道路,并为等离激元纳米结构中磁场的产生提供了重要的见解。诸如薄膜和亚微米结构中杂志的单脉冲全光切换之类的发现。然而,纳米尺度上磁性的局部光学控制的证明仍然难以捉摸。在这里,证明具有圆形极化飞秒激光脉冲的令人兴奋的金纳米盘可导致超快,局部和确定性控制磁化磁化强度的磁化。通过利用逆法拉第效应在等离子纳米散发中产生的磁矩来实现此控制。结果为在纳米级旋转设备中进行轻驱动的控制铺平了道路,并为等离激元纳米结构中磁场的产生提供了重要的见解。
Faraday旋转是固体,液体和气体的磁光反应中的基本效应。具有较大Verdet常数的材料在光学调节器,传感器和非转录器件(例如光学隔离器)中应用。在这里,我们证明了光的极化平面在中等磁力的HBN封装的WSE 2和Mose 2的HBN封装的单层中表现出巨大的法拉第旋转,在A激子转变周围表现出了几个度的巨大旋转。对于可见性方案中的任何材料,这将导致最高已知的VERDET常数为-1.9×10 7 deg T -1 cm -1。此外,与单层相比,HBN封装的双层MOS 2中的层间激子具有相反的符号的大型Verdet常数(VIL≈+2×10 5 deg T-1 cm-2)。巨大的法拉第旋转是由于原子较薄的半导体过渡金属二进制基因源中的巨大振荡器强度和激子的高g因子。我们推断出HBN封装的WSE 2和Mose 2单层的完全平面内复合物介电张量,这对于2D异质结构的Kerr,Faraday和Magneto-Circular二分法谱的预测至关重要。我们的结果在超薄光学极化设备中的二维材料的潜在使用中提出了至关重要的进步。
确保电池安全是开发电动汽车系统时最重要的因素之一。为了确保可以部署电池的安全操作,以跟踪行为并提供系统当前健康状况的指纹。这些技术可以包括热和电气表征,但是在过去的几年中,声学工具已越来越多地部署。声学光谱使科学家能够聆听操作过程中电池中发生的过程并确定异常行为,这可以预测早期降解或最终导致细胞的失败。在UCL研究人员的支持下,Fuse实习生将支持现有的研究,以试图对“电池的声音”进行全面了解。实习生将在操作过程中跟踪电池的特征响应,并将信号与电池电量响应中的关键标记相关联。在执行此操作时,实习生将有助于更好地理解“安全科学”,并改善避免电池故障所需的基本理解。
操作窗口和充电协议对于电池的整体寿命,尤其是高能量密度阴极至关重要。了解充电协议期间的降解机制对于揭示老化机制是必要的。此外,电解质公式和温度变化可能会推动这些极限。学生将制造锂离子电池,并研究各种电化学方案和不同的配方,以实现更好的性能和循环稳定性,以帮助跟踪衰老。该项目将涉及测试电池,分析循环过程中的电化学数据,并评估各种参数以预测电池的降解/老化。通过在线电化学质谱法(OEMS)多种前静音表征和操作式气体分析(OEMS)将进一步支持电化学数据,在线电化学数据将有助于生成OEMS数据。
构图。8 the rest nano thano liidic效应从以下意识到,在纳米级,可能不会忽略墙壁的表面电荷9,从而导致离子耦合 - uid传输现象,例如电渗透和流动液。10然而,近年来已经积累了证据表明,表面电荷不是纳米效应固体 - 液体界面的足够的描述符。从传导表面11,12的UID到由于介电对比而引起的强烈相互作用的离子,13-15几项研究表明需要在其电子性质水平上描述固体壁。确实可以预期,靠近实心壁的足够靠近,液体中带电颗粒产生的库仑电位会被壁物质的介电响应筛选:这种效应已称为“相互作用相互作用”。液体中的15个带电的颗粒是第一个和最重要的,离子:与体积库仑相互作用相比,与量子相比,相互作用的纳米渠中离子之间的相互作用相互作用会产生有效的库仑相互作用,从而导致了相关性的丰富效果。13,14但是,即使电中性的AeR时间平衡,也具有分子级电荷结构:水因此:水因此在Terahertz频率和宽范围的长度尺度上表现出热电荷(称为“ Hydrons” 17)。相应的库仑埃尔斯也会受到相互作用的影响:它们通过实心壁中电子的热和量子iCtation进行动态筛选。17,2218,19这种固体 - 液体耦合已显示出对流体动力摩擦的“量子”贡献,并在液体和固体电子之间的直接接近eLD能量转移中产生了“量子”贡献。19 - 21这些效果弥合了UID动力学和凝结物理物理学之间的差距,开为工程纳米级的开辟了道路,并使用Conth ning Walls的Electronic属性开辟了道路。