摘要:在波兰等国家,迫使发电系统结构发生变化的能源转变是一项特别困难的任务,在波兰,在这里,主要的能源是化石燃料。由于可再生能源的性质(随机和季节性变化),有必要研究其对电力系统的影响。对此主题进行了许多研究。他们考虑在处理越来越多的可再生能源,发电或环境方面的稳定量来对电源系统进行建模。本文研究了未来电力系统的关键来源之一 - 郊区风力涡轮机(OWT)。对发电系统的近海风能源的影响,对发电的稳定,监管策略的方法和经济学的影响。较少考虑的方面之一是OWT的能源生产与能源需求以及其他可再生能源的产生,尤其是在波罗的海南部地区以及波兰等国家的能源需求分布。研究的关键方面是填补这一差距。获得的结果表明,OWT中的平均每月发电与需求密切相关,并且每小时平均值与中等相关。OWT和光伏来源之间的发电之间的相关性非常高,并且在陆上和近海风力涡轮机之间是高度正面的。 此外,随着这些来源相互补充,未来的海上风电场可以与光伏来源合作。OWT和光伏来源之间的发电之间的相关性非常高,并且在陆上和近海风力涡轮机之间是高度正面的。此外,随着这些来源相互补充,未来的海上风电场可以与光伏来源合作。该研究表明,由于与需求非常高的能力和正相关,OWT具有开发和替代常规来源的显着潜力。另一方面,由于它们的正相关,因此系统与海上和陆上风能源的显着饱和可能对电源系统构成威胁。
由于团队的组建工作仍在进行中,因此尚未为 Stigma 制定环境管理系统或专门程序。管理系统以及环境、健康与安全和社会问题管理将与欧洲复兴开发银行合作制定,以商定一个实用且与环境影响成比例的系统。目前,所有环境和社会问题的运营管理均由 Kuba Puchowski 负责,该公司是一家负责施工现场环境监督的分包商。不过,将指派一名专门的 EHS 问题管理人员,以确保持续遵守相关要求。EHS 管理系统将包括定期审核当前运营情况并向贷方和利益相关者报告。
考虑了多种电源(MP)和能源存储(ES)的经济性,可靠性和产出特征,这是一个与海上风电场(OWFS)集成的多源系统及其建筑成本,以及运营和维护成本模型。该系统主要由OWF,热电厂,燃气轮机发电厂和抽水储存厂组成。鉴于电力系统和海上风力发电的经济性,提出了与OWF群集集成具有最佳总成本的客观功能的多源系统的双层最佳配置和操作调度方法。然后,提出了一种与OWF集成的多源系统的强大双级计划方法,该方法考虑了载荷和海上风能预测的双重不确定性,其中提出了分别通过改进的粒子群优化(PSO)算法和CPELX求解器来解决上层和下层模型。基于该方法,可以获得MPS和ES的成本优势能力配置和操作计划方案。最后,以山东省的OWF群体为例,以检查所提出方法的有效性和可行性。
欧文顿/米兰,2022 年 3 月 1 日——Novis Renewables, LLC 是美国 Falck Renewables North America 与 Eni New Energy US(Eni gas e luce – Plenitude 的全资子公司)共同开发的太阳能、陆上风能和储能的合作伙伴,随着其 USA 963 和 USA 40 电厂达到商业运营日期 (COD),该公司新增 15 兆瓦太阳能发电容量。每个太阳能项目(7.5 兆瓦)预计每年将产生约 9.25 吉瓦时的清洁电力,相当于约 865 个美国家庭的用电量。这两个项目都采用了强有力的社区参与方式。在运营的前 25 年,USA 963 和 USA 40 的收入将通过 VDER* 社区太阳能计划产生和签约,该计划允许商业和住宅用户利用项目产生的账单信用额度。这些账单信用额度将分配给用户的电费,通常可将每月电费降低约 10%。除了 VDER 计划产生的收入外,USA 963 和 USA 40 还将获得 2 个 NYSERDA** 计划(NY-Sun 和 Community Credit)的现金奖励。这两个项目将在 26 年后获得商业曝光,通过商业销售能源、容量和可再生能源证书 (REC) 获得收入。Novis Renewables 总裁 Jonathan Koch 表示:“我们很高兴能将新的太阳能容量添加到我们的可再生能源组合中,我们的 Union Springs 的 USA 963 和 USA 40 太阳能项目将投入商业运营。Novis 继续证明其在美国各地开发和建设项目的能力。” *VDER:分布式能源资源的价值 **NYSERDA:纽约州能源研究与发展局
农业和环境可持续性的概念是指在增加作物产量的同时尽量减少自然资源的退化;评估流入和流出的能量资源有助于强调系统的弹性和维持其生产力。在这方面,本研究评估了棉花生产的能源投入产出量及其环境干预措施。数据是通过面对面访谈随机从400名棉农收集的。结果表明,主要能源消耗来自三大元凶,即化肥、柴油和灌溉水(分别为11,532.60、11,121.54和4,531.97 MJ ha −1)。温室气体(GHG)总排放量为1,106.12 kg CO2eq ha −1,主要来自柴油、机械和灌溉水。能源使用效率(1.53)、比能(7.69 MJ kg − 1 )、能源生产率(0.13 kg MJ − 1 )和净能源增益(16,409.77 MJ ha − 1 )等能源刺激数据。进一步使用数据包络分析 (DEA) 进行分析表明,技术效率低下(即 69.02%)是能源使用效率低下的最可能原因。能源效率增长的无常趋势已被证实,能源节约潜力从 4,048.012 增加到 16,194.77 MJ ha − 1,温室气体排放量减少 148.96 – 595.96 kg CO 2eq ha − 1。进一步应用柯布-道格拉斯生产函数来发现能源投入与产出之间的关联,结果发现化肥、柴油、机械和杀生物剂对棉花产量有显著影响。边际物理生产力 (MPP) 值表明,燃料(柴油)、杀生物剂和机械额外使用的能量(1 MJ)可分别使棉花产量提高 0.35、1.52 和 0.45 kg ha − 1 。节能与能源共享数据联系最紧密,即 55.66%(直接)、44.34%(间接)、21.05%(可再生能源)和 78.95%(不可再生能源),进一步揭示了不可再生能源(化石燃料)的高使用率最终导致温室气体的高排放。我们希望这些发现能够有助于管理能源预算,我们相信这将减少温室气体的高排放。
摘要 为了减少海上风电场的运营和维护 (O&M) 支出(其中 80% 的成本与部署人员有关),海上风电行业希望通过机器人和人工智能 (RAI) 的进步来寻求解决方案。由于在动态环境中处理已知和未知风险的复杂性,住宅超视距 (BVLOS) 自主服务的障碍包括运行时安全合规性、可靠性和弹性方面的运营挑战。在本文中,我们采用了共生系统方法 (SSOSA),该方法使用共生数字架构 (SDA) 来提供支持技术的网络物理编排。实施 SSOSA 可以实现合作、协作和确证 (C 3 ),以解决自主任务期间的安全性、可靠性和弹性的运行时验证。我们的 SDA 提供了一种同步机器人、环境和基础设施的分布式数字模型的方法。通过 SDA 的协调双向通信网络,远程操作员可以提高对任务概况的可见性和理解。我们在受限操作环境中的资产检查任务中评估了我们的 SSOSA。展示了我们的 SSOSA 克服安全性、可靠性和弹性挑战的能力。SDA 支持生命周期学习和共同进化,并在互连系统之间共享知识。我们的结果评估了可能危及自主任务的突发和渐进故障以及未知事件。使用分布式和协调决策,SSOSA 增强了对任务状态的分析,其中包括对驻留机器人内关键子系统的诊断。此次评估表明,SSOSA 为 BVLOS 自主任务提供了增强的运行时操作弹性和安全合规性。SSOSA 有可能成为一种高度可转移到其他任务场景和技术的方法,为实现可扩展的自主服务提供了途径。
摘要 为了减少海上风电场的运营和维护 (O&M) 支出(其中 80% 的成本与部署人员有关),海上风电行业希望通过机器人和人工智能 (RAI) 的进步来寻求解决方案。由于在动态环境中处理已知和未知风险的复杂性,住宅超视距 (BVLOS) 自主服务的障碍包括运行时安全合规性、可靠性和弹性方面的运营挑战。在本文中,我们采用了一种共生系统方法 (SSOSA),该方法使用共生数字架构 (SDA) 来提供支持技术的网络物理编排。实施 SSOSA 可以实现合作、协作和确证 (C3),以解决自主任务期间的安全性、可靠性和弹性的运行时验证。我们的 SDA 提供了一种同步机器人、环境和基础设施的分布式数字模型的方法。通过 SDA 的协调双向通信网络,远程操作员可以提高任务概况的可见性和理解力。我们在受限操作环境中的资产检查任务中评估了我们的 SSOSA。展示了我们的 SSOSA 克服安全性、可靠性和弹性挑战的能力。SDA 支持生命周期学习和共同演进,并在互连系统之间共享知识。我们的结果评估了突发事件和
摘要:传输系统操作员对大型风电场施加了几个网格代码约束,以确保电源系统稳定性。这些限制可能会由于无法销售所有电力而减少风电源厂的净值。违反这些约束的行为也导致对风电场运营商的处罚。因此,在本研究中制定了一种操作策略,该策略用于使用储能系统优化风电场的运行。这有助于填充传输系统操作员施加的所有网格代码约束。特别是在本研究中考虑了有限的功率约束和储备功率约束。此外,开发了一种优化算法,以最佳的储能系统尺寸,从而降低了风电场的总运营和投资成本。还详细分析了影响储能系统大小的所有参数。此分析允许风电场运营商考虑到网格代码约束和风电场的本地信息的最佳储能系统的最佳尺寸。
摘要 — 典型的 4 型风力涡轮机使用直流链路逆变器将电机连接到电网,从而为 N 涡轮机农场的每个涡轮机提供 2 个功率转换器步骤,并将产生 2 N 个功率转换器。这项工作提出了一种用于 4 型风电场的直流总线收集系统,该系统减少了所需的转换器总数,并最大限度地降低了储能系统 (ESS) 要求。这种方法要求每个涡轮机有一个转换步骤,ESS 需要一个转换器和一个电网耦合转换器,这导致风电场的转换器数量为 N +2,并可能节省大量成本。然而,直流收集系统的权衡之一是需要增加能量存储以过滤功率变化并提高电网的电能质量。本文介绍了一种有效的直流总线收集系统设计的新方法。风电场的直流收集在涡轮机之间实施功率相位控制方法,该方法可以过滤变化并提高电能质量,同时最大限度地减少对增加储能系统硬件的需求并提高电能质量。相位控制利用了新颖的功率包网络概念和非线性功率流控制设计技术,可确保稳定和增强的动态性能。本文介绍了直流收集和相位控制的理论设计。为了证明这种方法的有效性,提供了详细的数值模拟示例。