Durvalumab 联合铂类化疗是广泛期小细胞肺癌的一线治疗方案。免疫检查点抑制剂(durvalumab)可引起免疫相关不良事件 (irAE)。我们在此报告了首例在服用 durvalumab 后出现抗白细胞介素 6 自身抗体产生的致死性脓毒症病例。一名 62 岁的女性广泛期小细胞肺癌患者接受了卡铂-依托泊苷联合 durvalumab 化疗。治疗后血清 C 反应蛋白 (CRP) 水平降至检测灵敏度以下。她在维持性 durvalumab 治疗期间出现严重脓毒症;然而,她的血清 CRP 水平并没有升高。血清抗白细胞介素 6 自身抗体检测呈阳性,这会导致无 CRP 感染。抗白细胞介素 6 自身抗体的产生和随后的脓毒症(血清 CRP 未升高)是可能的 irAE。
急性髓系白血病 (AML) 是一种骨髓造血干细胞恶性疾病。其特征是异常髓系前体细胞的快速增殖和积累。这些异常细胞会破坏正常造血,导致骨髓衰竭和血细胞减少。临床上,AML 因正常血细胞生成受到抑制而出现贫血、感染和出血症状 [1]。在美国,该疾病的发病率为每年每 100,000 人 4.3 例 [1]。AML 的临床发病率上升了 15%,其在所有白血病病例中所占的比例在过去 30 年中增长了 27% [2]。AML 占白血病相关死亡人数的比例最高,为 60%,是白血病中最致命的类型之一 [2]。 AML 主要影响老年人,诊断时的中位年龄为 68 岁[1]。
饲料中的霉菌毒素污染是全球安全问题。它对家禽行业造成了巨大的经济损失,并对人类健康构成了重大危害。目前的研究旨在确定在也门达哈尔省(Dhamar Convictorate)种植肉鸡鸡肉的配方和原材料饲料中的霉菌毒素污染水平。从达哈尔省的家禽农场使用的各种家禽饲料中随机收集了总共36个样品。甲醇用作从固体饲料样品中提取霉菌毒素的有机溶剂。定量快速ELISA测试试剂盒用于检测霉菌毒素的水平。结果表明,在36.11%,83.33%,22.22%和100%的测试样品中检测到Aflatoxins,T-2毒素,Ochratoxins A和Zeralenone,分别为0.37、21.67、0.8、0.8、0.8和14.04 ppb。在普通的feed-I(1.00和3.47 ppb)和普通的饲料II(1.07和4.9 ppb)中发现了最高水平的黄曲霉毒素和ochratoxin。同样,在普通饲料I(19.87 ppb)中检测到了最高水平的Zearalenone。在原始浓缩物(49.23 ppb)和最终浓缩物(49.47 ppb)中检测到最高水平的T-2毒素。霉菌毒素。统计分析表明,在饲料类型之间,霉菌毒素水平有显着差异(P值<0.05)。普通饲料与原成分饲料相比更受污染。需要进一步的研究来确定家禽饲料中与霉菌毒素污染相关的因素。这些发现强调了霉菌毒素对Dhamar省家禽和公共卫生构成的威胁,并指出需要采取干预措施以降低这些风险。
自体脂肪嫁接(也可以称为自体脂肪移植,脂肪注射,脂肪填充或脂式解死术)已被用作乳房切除术或乳房切除术后重建后重建后的乳房切除术或对乳房的乳房疗法的乳房疼痛和乳房疗法疗法的乳房疼痛和改善的乳房疗法和乳房的体积(乳腺切除术后乳腺疗法)的辅助(将其恢复为非辐照的外观和一致性。自体脂肪移植通常涉及从腹部或大腿转移到乳房中的脂肪,取决于其状况,进行了多次疗程。已提出了脂肪衍生的干细胞作为脂肪移植物的补充,以改善移植物的存活率。脂肪组织是一种高度血管化的组织,脂肪细胞与相邻的毛细血管血管直接接触。在游离脂肪嫁接中,营养物质从血浆中直接扩散在周围的床中,随后的血运重建通常发生在48小时内,对于移植物存活至关重要。如果本地环境不经历
生物相容性材料是体内保存的天然或人造物质,用于将活细胞转变为功能器官。骨组织和生物相容性正成为再生骨的替代方法,因为它比自体移植和同种异体移植具有一些明显的优势。本研究旨在制造一种可用作骨替代品的新型多孔支架 Ti-Nb-Zr-Sn 合金。选择不同重量比的 Ti-Nb-Sn-Zr,并使用粉末冶金法合成。加入锆 (Zr) 以增强生物性能。Ti、Nb 与 Zr 和 Sn 元素因其与人体具有出色的生物相容性而被利用。通过增加Zr和Nb的重量比,Ti-35Nb-7Zr-4Sn合金具有1042至1603 MPa之间的高抗拉强度。此外,35%Nb/7%Zr与4%Sn复合材料表现出更高的硬度,这有利于在汽车应用中模拟骨组织和压铸配件。进行疲劳和磨损分析有助于我们了解Ti-Nb-Zr-Sn合金的行为。关键词:铌合金;生物相容性;力学性能;形态特征;骨科应用
干细胞生物学以及再生医学的相关领域涉及在包括骨髓和脂肪组织在内的多种组织中存在的多能干细胞。研究表明,1克脂肪组织产生约5 x 10 3的干细胞,其比1克骨髓中的间充质干细胞数量高出500倍。[1]干细胞由于其多能性和无限能力的自我更新能力,为组织工程和重建程序的进步提供了希望。脂肪组织尤其代表了脂肪衍生的干细胞(ADSC)的丰富且易于接近的来源,该来源可以沿多个中胚层谱系区分。[1] ADSC可以允许从另一个部位转移后改善移植物存活和新的脂肪组织的产生。
作者:Fnu Aperna、Ali K. Alsugair、Saubia Fathima、Ayalew Tefferi 和 Naseema Gangat 收稿日期:2024 年 10 月 28 日。接受日期:2024 年 11 月 21 日。引文:Fnu Aperna、Ali K. Alsugair、Saubia Fathima、Ayalew Tefferi 和 Naseema Gangat。接受钠-葡萄糖协同转运蛋白 2 抑制剂治疗的骨髓纤维化患者血红蛋白水平的偶然变化。《血液学》。2024 年 11 月 28 日。doi:10.3324/haematol.2024.286867 [印刷前电子出版] 出版商免责声明。印刷前电子出版对于科学的快速传播越来越重要。因此,Haematologica 会以电子方式发布已完成定期同行评审并被接受出版的稿件早期版本的 PDF 文件。此 PDF 文件的电子发布已获得作者批准。在印刷前以电子方式发布稿件后,稿件将接受技术和英语编辑、排版、校对并提交给作者最终批准;稿件的最终版本将出现在期刊的常规期刊中。适用于期刊的所有法律免责声明也适用于此制作过程。
• 雄性 Ldlr-/-.Leiden 小鼠以快餐饮食 (FFD) 喂养 18 周以诱发血脂异常、动脉粥样硬化和 MASH 特征,并用 TVB-3664(denifanstat 的替代 FASN 抑制剂,5 mg/kg,PO,QD)治疗 10 周。终点包括血浆脂质、脂蛋白谱、炎症标志物谱、肝脏组织学和主动脉根部动脉粥样硬化的组织学分析(根据 4 个横断面的 AHA 评分确定病变面积和严重程度,荷兰 TNO)。
中年人体脂定位、胰岛素抵抗和淀粉样蛋白负担之间的关联目的中年肥胖是晚年患阿尔茨海默病的风险因素。然而,体脂的代谢和炎症影响因其解剖位置而异。在本研究中,我们旨在调查 MRI 衍生的腹部内脏和皮下脂肪组织 (VAT 和 SAT)、肝脏质子密度脂肪分数 (PDFF)、大腿脂肪与肌肉比 (FMR) 和胰岛素抵抗与认知正常中年人全脑淀粉样蛋白负担之间的关联。方法和材料总共 62 名认知正常的中年人 (年龄:50.35 岁,61.3% 为女性,BMI:32.30 kg/m2>,53.2% 为肥胖) 接受了脑部 PET 扫描、身体 MRI 和代谢评估。使用胰岛素抵抗稳态模型评估 (HOMAIR) 来测量胰岛素抵抗。通过推注 15mCi [11C] PiB 并进行 60 分钟扫描进行动态淀粉样蛋白成像。注射后 30 至 60 分钟窗口内的数据用于计算全脑淀粉样蛋白 Centiloid。使用内部基于 MATLAB 的软件半自动分割 VAT 和 SAT。PDFF 图由肝脏化学位移编码的 MR 图像生成,并使用 3D CNN 模型和手动校正进行分割。在对坐骨升支和膝关节内侧髁之间的大腿中部切片进行预处理和 N4ITK 偏差校正后,使用内部 MATLAB 程序分割大腿总脂肪(皮下、肌间和肌内脂肪)和肌肉体积。计算大腿总脂肪与肌肉的比率 (FMR)。使用线性回归,评估了 Centiloid 与 BMI、HOMAIR、VAT、SAT、PDFF 和 FMR 之间的关联,年龄和性别为协变量。结果 肥胖个体的 Centiloid 比非肥胖个体高 (p=0.008)。Centiloid 与 VAT (Adj-R2=0.25, p<0.0001)、HOMAIR (Adj-R2=0.08, p=0.02)、SAT (Adj-R2=0.08, p=0.02) 和 BMI (Adj-R2=0.09, p=0.01) 显著相关,但与其他脂肪指标无关。中介分析表明,BMI 对 Centiloid 的影响完全由 VAT 介导(ACME= 0.282,p <2e-16,ADE= 0.061,p=0.56),并且 VAT 对淀粉样蛋白负担有显著的直接影响(ADE=0.0104,p<2e-16),而 HOMAIR 无法解释(ACME=-0.003,p=0.86)。结论肥胖、内脏脂肪含量较高,以及程度较小的胰岛素抵抗、BMI、皮下脂肪(但不是肝脏或大腿脂肪)与中年人全脑淀粉样蛋白含量较高有关。这凸显了体脂解剖特征对于阿尔茨海默病风险的重要性,其中肥胖相关的淀粉样蛋白病理完全由内脏脂肪解释。临床相关性/应用可以考虑修改内脏脂肪组织以在中年时期降低与肥胖相关的阿尔茨海默病风险。
重印和许可信息可在 http://www.nature.com/reprints 上找到。通信和材料请求应发送至 Yogesh Goyal 或 Arjun Raj。yogesh.goyal@northwestern.edu;arjunrajlab@gmail.com。作者贡献 YG 和 AR 构思并设计了这个项目。YG 设计、执行和分析了所有实验,由 ARMP 监督,GTB 和 EIG 协助 YG 进行 FateMap 实验和分析。RHB、PTR、JL 和 MP 协助 YG 进行批量 RNA-seq 实验和分析。MP 根据 YG 和 ARIPD 的意见对修订进行了特定分析,GTB、SSA、EIG、MCD 和 CC 协助 YG 进行组织切片以及自动 RNA FISH 和 DAPI 扫描和分析。YG、BE 和 KK 设计并优化了 PCR“副反应”引物,以从 scRNA-seq 文库中恢复条形码。 RHB、GTB 和 JL 提取了 gDNA 用于 WGS 实验,NB 在 YG 的输入下进行了 WGS 分析,ARAK 协助 YG 设计和实施球体实验。GTB、NJ、JL、JB、MP 和 IAM 协助 YG 准备条形码库并完成计算流程。YG 设计了小鼠条形码实验,DF、HL、YC、GMA 和 MEF 在 YG、MH、AR 和 ATWYG 的输入下进行了小鼠实验,GTB 为小鼠实验准备了条形码库。MC、RHB、RGW、RL、DRI、SBJ、KW、MP、AJL 和 JAW 在 YG 和 ARYG 的输入下进行了人类患者实验和分析,GTB 和 EIG 准备了本研究中使用的所有插图。YG 和 AR 在所有作者的帮助下撰写了手稿。