地表沉降是机械化隧道施工中的一个重要参数,应在开挖前确定。机械化隧道施工引起的地表沉降分析是一个具有各种不确定性的岩土工程问题。与确定性方法不同,可靠性分析可以考虑地表沉降评估的不确定性。在本文中,利用基于遗传算法 (GA) 的可靠性分析方法(二阶可靠性方法 (SORM)、蒙特卡洛模拟 (MCS) 和一阶可靠性方法 (FORM))来建立地表沉降可靠性分析模型。具体而言,对于大型项目,极限状态函数 (LSF) 是非线性的,很难基于可靠性方法应用。为了解决这个问题,GMDH(数据处理组方法)神经网络可以估计 LSF,而无需对函数形式做出额外的假设。在本文中,GMDH 神经网络被改编以获得 LSF。在 GMDH 神经网络中,尾孔注浆压力、隧道底板地下水位、深度、平均渗透率、距竖井的距离、俯仰角、平均表面压力和尾孔注浆填充百分比被用作输入参数。同时,表面沉降是输出参数。使用来自曼谷地铁的现场数据来说明所提出的可靠性方法的能力。
* Fateme Mahdikhany和Sean Driskill是这项工作的同等贡献者,并被指定为第一作者。通讯作者:John Schaibley,Johnschaibley@arizona.edu