共振非弹性X射线散射(RIX)是一种广泛使用的光谱技术,可提供对原子,分子和固体的电子结构和动力学的访问。但是,RIX需要一个狭窄的带宽X射线探针才能达到高光谱分辨率。从X射线游离电子激光器(XFEL)传递能量单色光束(XFEL)的挑战限制了其在几次实验中的使用,包括用于研究高能量密度系统。在这里,我们证明,通过将XFEL自发自发发射(SASE)的测量与RIX信号相关联,使用神经代理的动态内核反卷入率,我们可以实现比起X-Ray bardeming x-ray barde-bardwidth bander-band banders off band barde the bard bands faster of the Electonic结构的分辨率。我们进一步展示了该技术如何允许我们区分Fe和Fe 2 O 3的价结构,并提供了对温度测量值以及温度温度化合物中的M壳结合能的估计值。
抽象的金属氧化物太阳能吸收剂非常适合光电化学应用,在该应用中,必要的特性还包括在高度氧化环境中的稳定性,除了太阳能转化。金属杂质特别关注的是,由于其相对较低的带隙能量与传统的宽间隙光催化剂相比。基于BIVO 4的光轴的共同努力揭示了多种途径,用于提高高于2.5 eV的光子能量的太阳转换效率,但尚未解决不可思议的高带隙能的最终性能限制。fe和cr杂质具有较低的带隙,因此具有较高的潜在太阳转换效率,尽管迄今为止,吸收的2-2.5 eV光子未有效地转换为所需的阳极光电流。通过使用组合合成和高吞吐量筛选,我们证明了用单斜晶MVO 4相(M = Cr,Fe)取代了该能量范围内光子的利用率。鉴于可用的光阳极改进技术组合,我们建议优化(Cr 0.5 Fe 0.5)基于VO 4的光轴,这是启用太阳能燃料技术的有希望的路径。
封面显示了我们对Fe/Si + 11 B 4 C(前)和Fe/Si(后)多层的研究结果。可以比较电子衍射图像,Gisaxs原始数据和X射线反射率(也可以用于艺术目的)。也可以在反射率曲线之间的区域内显示多层的示意图。,fe/si + 11 b 4 c(前)代表未来,而fe/si(背面)描绘了过去。此外,艺术品也可以看作是电子衍射图像中心中的中子源,而gisaxs和XRR则展示了更改梁特性的外向光束和光学元件,在梁的末端,您会找到样品本身,模仿我研究的中心部分。封面的脊柱还显示了Fe/Si + 11 B 4 C(上)和Fe/Si(下图)多层的TEM图像。
铁硫 (Fe–S) 蛋白对于产甲烷菌进行甲烷生成和生物固氮(固氮)的能力至关重要。尽管如此,产甲烷菌中 Fe–S 簇生物合成所涉及的因素仍然很大程度上未知。最小 SUF Fe–S 簇生物合成系统 (即 SufBC) 被假定为产甲烷菌中的主要系统。本文研究了 SufBC 在含有两个 sufCB 基因簇的 Methanosarcina acetivorans 中的作用。CRISPRi-dCas9 和 CRISPR-Cas9 系统分别用于抑制或删除 sufC1B1 和 sufC2B2 。在任何测试条件下,包括固氮,无论是 sufC1B1 和 sufC2B2 的双重抑制还是同时删除 sufC1B1 和 sufC2B2 都不会影响 M. acetivorans 的生长。有趣的是,仅删除 sufC1B1 在所有生长条件下都会导致生长延迟表型,这表明 sufC2B2 的删除在没有 sufC1B1 的情况下起到了抑制突变的作用。此外,删除 sufC1B1 和/或 sufC2B2 不会影响 M. acetivorans 细胞中的总 Fe-S 簇含量。总体而言,这些结果表明最小 SUF 系统不是 M. acetivorans 中 Fe-S 簇生物合成所必需的,并挑战了 SufBC 在产甲烷菌中 Fe-S 簇生物合成中的普遍作用。
完整作者名单:高星耀;普渡大学材料工程学院李雷刚;普渡大学材料工程学院张迪;普渡大学材料工程学院王雪菁;普渡大学材料工程学院简杰;普渡大学材料工程学院何子豪;普渡大学电气与计算机工程学院王海燕;普渡大学系统,MSE;尼尔·阿姆斯特朗工程大楼
朝着工业和学术的角度实现强大的潜在应用。表面上操纵缓冲液和有机溶剂对于许多生物,医学和/或化学操作都是基础。[1-9]用于迅速现场诊断和治疗,临床诊断,基于细胞的应用以及检测或感测的护理点应用是使用情况的例子。[10]大量精力集中在微型化和自动化上,也可以将它们视为远程医疗应用的可能路线,提高效率并减少所涉及的材料总量。例如,在进行诊断测试的情况下,涉及微流体芯片涉及的生物材料和化学试剂的减少可以对比化学成本,增加总加工测试的数量,加快时间的加快时间,并且在自动化的情况下,还可以降低交叉污染和维持的风险。基于智能表面的不同解决方案已被提出,用于控制液滴运动并开放两相油 - 水分离,生物技术,自我清洁和抗质应用,只是为了引用很少的。[11-14]在平面表面上,可以使用多种开发的方法来控制液滴的运动,例如表面声波,磁对照表面,热毛细血管,介电粒细胞感和电trowetting-n-eilectric芯片。[25,26][15–21]在后一种情况下,电极的像素尺寸限制了可以操纵的最小液滴尺寸,以克服该问题,已经提出了轻图案的电解图,以在开放的,毫无曲线的,特征和光导能的表面上进行液滴操纵。[22]创建液体操作表面梯度的替代方法包括对外部刺激的响应改变表面电荷密度和质地的改变(例如,磁/电场)以及表面富集,具有化学功能基团的表面群体,以动态地控制表面的性能,[23,24]越来越需要创建平坦的模式,或者在平坦的范围内屈曲,或者是柔韧性的,或者是柔韧性的。
摘要。四苯基卟啉 (TPP) 是一类有趣的有机分子,其特征是环状结构,中心有金属离子。通过适当修改反应界面,即使在金属基底上也可以获得此类分子的有序生长,正如我们对与氧钝化的 Fe(001) 偶联的 ZnTPP 分子所展示的那样 [G. Bussetti 等人。Appl. Surf. Sci. 390, 856 (2016)]。最近,我们专注于 CoTPP 分子,其特征是磁矩不为零,因此对磁性应用具有潜在意义。与 ZnTPP 的情况一样,我们对一个单层覆盖的结果报告了平躺分子的有序组装的形成。然而,在堆积方案和与基底的电子相互作用程度方面,观察到两种分子物种之间存在一些差异。为了对 CoTPP 也获得对 Fe 上分子组织的全面了解,我们在此补充了我们之前的研究,通过跟踪 CoTPP 薄膜的生长以增加覆盖率,表明确实实现了此类分子的有序堆叠,至少最多四个分子层。
密度功能理论(DFT)计算证实了结构有序的Fe 2 Val Heusler合金是非磁性窄间隙半导体。这种化合物很容易在具有高浓度的抗铁矿缺陷的各种无序相中结晶。我们研究结构障碍对全赫斯勒合金Fe 2 val的电子结构,杂志和电子传输特性及其远程计时量当量的Fe 2 Val 1的影响。35。与从头算计算有关的数据分析表明,反静脉疾病的出现主要是由于FE-V和Fe-Al化学计量变化引起的。弱磁性Fe 2 Val 1的数据。35关于Ni 2 Val。Fe 2 Val 1。 35可以分类为具有明显的自旋式贡献的几乎铁磁金属,但是,这对其热电特性没有主要影响。 FE样品的优异ZT形状分别为300 K约0.05,Ni One的数字分别为0.02。 但是,有记录在Fe / V站点交换产生的狭窄D频段可能是Fe 2 Tial 1的物理性质的异常温度依赖性。 35合金,强度相关的电子系统的特征。 为例,Fe 2 Val 1的磁敏感性。 35表现出griffins阶段的奇异性特征,在T G〜200 k下方是一种不均匀的电子状态。我们还进行了数值分析,该数值分析支持griffins phos phos phop phop peracario。Fe 2 Val 1。35可以分类为具有明显的自旋式贡献的几乎铁磁金属,但是,这对其热电特性没有主要影响。FE样品的优异ZT形状分别为300 K约0.05,Ni One的数字分别为0.02。但是,有记录在Fe / V站点交换产生的狭窄D频段可能是Fe 2 Tial 1的物理性质的异常温度依赖性。35合金,强度相关的电子系统的特征。为例,Fe 2 Val 1的磁敏感性。35表现出griffins阶段的奇异性特征,在T G〜200 k下方是一种不均匀的电子状态。我们还进行了数值分析,该数值分析支持griffins phos phos phop phop peracario。
作者的完整列表:埃卡特琳娜·多尔戈波洛娃(Dolgopolova); Los Alamos国家实验室,材料物理和应用部:Dongfang综合纳米技术中心; Los Alamos国家实验室,材料物理和应用部:纳米技术中心Hartman,S;洛斯阿拉莫斯国家实验室,约翰MST-8瓦;洛斯阿拉莫斯国家实验室,材料和应用部综合纳米技术RIOS,Carlos的材料和应用部;马萨诸塞州理工学院材料科学与工程系HU,Juejun;马萨诸塞州理工学院材料科学与工程系Kukkadapu,Ravi;太平洋西北国家实验室,乔安娜EMSL卡森;洛斯·阿拉莫斯国家实验室,里亚化学司,洛斯;德克萨斯大学达拉斯分校,安东(Anton)物理马尔科(Malko);德克萨斯大学达拉斯大学,阿纳斯塔西娅物理学布雷克(Blake); Los Alamos国家实验室,材料物理和应用部:Sergei综合纳米技术中心;洛斯·阿拉莫斯国家实验室,化学部罗斯利克,奥利克西;福特汉姆大学,物理Piryatinski,安德烈; Los Alamos国家实验室,理论部Htoon,Han; Los Alamos国家实验室,MPA-Cint Chen,Hou-tong;洛斯阿拉莫斯国家实验室,纳米技术综合中心Pilania,Ghanshyam;詹妮弗(Jennifer)霍林斯沃思(Hollingsworth)的洛斯阿拉莫斯国家实验室;洛斯阿拉莫斯国家实验室,a。材料物理和应用部:集成纳米技术中心
8 MAC 分析 该系统的一个主要应用是能够比较和更新有限元模型 (FEM)。为此,可以通过通用文件格式数据传输将所有测量点的完整光谱数据文件导出到实验模态分析程序,在该程序中可以根据测量的传递函数计算出模态参数(固有模态形状、特征频率和模态阻尼)。在本例中,使用了 TechPassion 的模态分析程序 VMAP。它提供 Polytec 二进制文件格式的本地导入,而无需事先转换为通用文件格式。在 [5, 6] 中可以找到类似的示例。可以将模态形状和特征频率与从模拟计算出的值进行比较,并且可以将模态阻尼添加到 FEM。现在可以将 FEM 调整到真实结构,并可以使用 VMAP FE 模型更新工具得出改进的模型。