USB -C端口 - 用于供电和编程板。您可以使用任何USB C电缆为其供电。插入USB时,它将为Lipoly电池充电。Lipoly Connector/Charger-您可以将任何250mAh或更大的3.7/4.2V Lipoly电池插入此JST 2 -PH端口,以供电羽毛并为电池充电。插入USB时,电池将从USB电源中充电。如果电池插入并插入了USB,则羽毛将自身从USB中供电,并且会为电池充电。CHG LED - 电池充电时,黄色CHG LED将被点亮。 充电后,LED会关闭。 如果没有电池插入电池,CHD LED可能会迅速闪烁 - 这是可以预期的!CHG LED - 电池充电时,黄色CHG LED将被点亮。充电后,LED会关闭。如果没有电池插入电池,CHD LED可能会迅速闪烁 - 这是可以预期的!
I2C端口(SDA,SCL),硬件UART(RX,TX)和SPI(SCK,MOSI,MISO)的PIN号已更改。如果您的代码对这些引脚有过硬编码的使用,则您需要用新数字替换它们,或更改代码以使用SDA或SCK(例如SDA或SCK)的“漂亮”名称。在Espressif板支持包中选择新的Feather ESP32 V2板时,将替换正确的数字。请注意,名称位于同一位置,我们没有更改I2C/ UART/ SPI引脚位于板上的位置,正是它们在模块中连接的ESP32 PIN号。TX旁边的“角”引脚已从引脚21变为37。此引脚均未在任何羽毛上使用,因为它被认为是“额外的销钉”。它也从GPIO更改为仅输入,其余的编号引脚和A0-A5引脚没有更改PIN号码。
240 MHz 双核 Tensilica LX6 微控制器,具有 600 DMIPS 集成 520 KB SRAM 集成 802.11b/g/n HT40 Wi-Fi 收发器、基带、堆栈和 LWIP 集成双模蓝牙(经典和 BLE) 4 MByte 闪存 板载 PCB 天线 超低噪声模拟放大器 霍尔传感器 10x 电容式触摸接口 32 kHz 晶体振荡器 3 x UART(Feather Arduino IDE 支持中仅默认配置两个,一个 UART 用于引导加载/调试) 3 x SPI(Feather Arduino IDE 支持中仅默认配置一个) 2 x I2C(Feather Arduino IDE 支持中仅默认配置一个) 12 x ADC 输入通道 2 x I2S 音频 2 x DAC 每个 GPIO 引脚上可用的 PWM/定时器输入/输出 带有 32 kB TRAX 缓冲区的 OpenOCD 调试接口 SDIO主/辅 50 MHz SD 卡接口支持
拉动尾羽时,少量的皮肤细胞仍附着在鱿鱼的尖端上。这些皮肤细胞是可用于确定单个鸟类的种群起源的宝贵DNA来源。此外,羽毛本身的一部分也可以用于稳定的同位素分析,该分析可以提供有关羽毛生长的位置(至少纬度)的重要信息。我们建议在每只鸟的带过程中收集两条尾羽。这不包括啄木鸟的啄木鸟和尾羽对于觅食至关重要的猎物。对于这些物种,10个身体羽毛就足够了。在同一季节,无需从同一个人那里收集羽毛。
项目描述和目标红色羽毛湖是一个偏远的社区,位于科罗拉多州柯林斯堡西北部的岩石山区,由普德尔谷农村电力协会(PVREA)提供,来自69 kV径向接触系统。该区域受到车辆事故和天气事件造成的短期断电,损害了为该地区服务的径向电力线。此外,野火和主要风暴可能会带来延长的中断。微电网将用于为大红色羽毛湖社区提供基本服务(其中包括数百所房屋和季节性的小木屋,距离非法人乡村中心几英里)。在紧急情况下,微电网将支持14个计量位置,总负载约为90 kW。在岛化操作期间,
共生微生物已被证明可以与它们的宿主共存,并在各种动物分类单元中共存,并实质上影响宿主生理,行为,健身和健康。在鸟类中,在Preen腺和羽毛上发现的细菌群落知之甚少。preen油被发现含有有机化合物(VOC)和抗菌化合物,可有助于宿主的抗菌防御,并可以在交流过程中充当化学信号。假设PREEN腺微生物组可以合成这些化合物,但是,关于Preen Gland微生物组是否涉及VOC和抗菌化合物的产生,知识有限。我们将执行微生物组移植实验,在其中我们将从自由生活供体物种中收集preen腺和羽毛微生物组,并将这些微生物组移植到圈养的Java麻雀(Lonchura oryzivora)上。我们的目标是:1。测试preen腺微生物组是否确定preen油的抗菌和VOC曲线2。确定preen腺,羽毛,口服和肠道微生物组之间的相互作用3。Investigate how the preen gland and feather microbiomes affect feather quality and preening behaviour Methods: - Experiments in captivity - Fieldwork - Preparation and application of microbiome inocula - Behavioural observations and analyses (preening behaviour) - Feather quality analysis in vitro (damage of feather microstructures, feather brightness, feather degradability) - Data analysis in R
史密森学会的羽毛实验室于2021年7月23日从您那里收到5袋样本。样品是从2021年7月13日在加利福尼亚州蒙特雷发生的一次事故中回收的。
Feather Touch 探头专为测量汽车挡风玻璃、电视显像管、药瓶、机电元件和塑料零件等精密表面而设计。传统探头施加的尖端力约为 0.7N,而 Feather Touch 在水平位置使用时仅施加 0.18N。通过将自然弹性的传统护罩替换为公差较小的压盖,可以实现这一降低。对于气动版本,通过压盖的空气泄漏被限制在 1 巴时小于 2.5 毫升/秒,以最大限度地降低被测量表面受到污染的可能性。尽管空气流量很小,但探头内的轴承会不断被清洗,避免积聚灰尘(建议使用过滤空气)。可更换的尼龙尖端用于防止表面损坏,但测量热玻璃时,可以安装碳化钨尖端。电缆上的编织钢丝网覆盖层为停机时间至关重要的应用提供了额外的保护。为了获得极低的力,Feather Touch 探头可以不带弹簧。前进和后退运动由气动/真空缩回激活,但调节气压可使所有探头具有相同的尖端力,并在整个测量范围内保持恒定。如果探头垂直安装(尖端朝上),则缩回是由移动部件的自重完成的,无需真空。
鸡羽毛被认为是家禽行业的废产品,可以在环境中造成固体废物问题。角质酶有可能降解不溶性角蛋白,主要存在于羽毛,头发,角和蹄中。目前的研究的目的是隔离,筛选和鉴定羽毛废物倾倒部位的角蛋白细菌,并优化最大角质酶产生的培养条件,并随后羽毛降解。从印度泰米尔纳德邦Virudhunagar的羽毛废物倾倒现场分离出14种细菌,并被筛选为其角蛋白水解特性。相对,三种细菌表现出更好的角依性活性。基于形态学和生化特征和16S rRNA基因序列分析,分别被鉴定为licheniformis杆菌,谷氨酸杆菌菌Arilaitensis和Serratia marcescens。研究了温度,pH,羽毛浓度和各种底物对这些细菌生长参数的影响。所有细菌在40°C下的生长和蛋白质产生较高。B. licheniformis和S. marcescens在pH 8.5时产生了更多的蛋白质,而G. arilaitensis产生了更多的蛋白质,并在pH 8时生长良好。因此,使用鸡羽毛粉(1%)作为碳和氮来源,将三种细菌淹没发酵。中,AriLaitensis是降解羽毛的优越性,产生更多的蛋白质(2.15±0.04 mg/ ml)和氨基酸(0.498±0.019 µ g/ ml)。显微镜观察到的羽毛水解剂涂片表明,g。Arilaitensis降解了鸡羽毛的效率更高,相对其他两种细菌。