获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
近年来,联邦学习(FL)作为分布式机器学习范式引起了极大的关注。为了促进“被遗忘的权利”的实施,Feder-Eted Machine Unrearning(FMU)的概念也出现了。但是,当前的FMU方法通常涉及额外的耗时步骤,并且可能没有全面的未学习能力,这使得它们在实际的FL情况下的实用性降低了。在本文中,我们介绍了Fedau,这是一个创新有效的FMU框架,旨在克服这些限制。具体来说,Fedau将轻量级的辅助辅助模块置于学习过程中,并采用直接的线性操作来促进学习。这种方法消除了对耗时的步骤的要求,使其适合FL。此外,Fedau表现出了惊人的多功能性。它不仅使多个客户能够同时执行学习任务,还可以支持各种粒度级别的学习,包括各个数据示例,特定类别,甚至在客户级级别。我们对MNIST,CIFAR10和CI-FAR100数据集进行了扩展实验,以评估Fedau的性能。结果表明,在保持模型准确性的同时,Fedau效率地实现了所需的未学习效果。