联合学习允许分布式的医疗机构可以协作学习具有隐私保护的共享预测模型。在临床部署时,接受联邦学习的模型仍会在联邦外面完全看不见的霍斯群岛上使用时仍会遭受性能下降。在本文中,我们指出并解决了联合域的生成(FedDG)的新型问题设置,该设置旨在从多个分布式源域中学习联合模型,以便它可以直接概括为看不见的目标域。我们提出了一种新颖的方法,在持续频率空间(ELCF)中称为情节学习,通过启动每个客户端在数据分散率的挑战性约束下利用多源数据分布来利用多源数据分布。我们的方法通过有效的连续频率空间插值机制以隐私保护方式传输客户之间的分布信息。通过转移的多源分布,我们进一步仔细设计了面向边界的情节学习范式,以将本地学习暴露于域分布变化,尤其是在医学图像分割场景中尤其满足模型概括的挑战。在两个医学图像分割任务上,我们的方法的有效性优于最先进的表现和深入消融实验。可以在https://github.com/liuquande/feddg-elcfs上使用代码。
Vector Institute)、Vijay Janapa Reddi(哈佛大学)、G Anthony Reina(在英特尔任职期间做出贡献)、
上下文:分散的联合学习(DFL)是一个新兴的范式,可以实现无需集中数据和模型聚合的协作模型培训,从而增强了隐私和弹性。然而,随着能源消耗和碳排放量在不同的系统配置中有所不同,其可持续性仍未得到充满信心。了解DFL的环境影响对于优化其设计和部署至关重要。目标:这项工作旨在开发一个全面和运营的框架来评估DFL系统的可持续性。为了解决它,这项工作提供了一种系统的方法来量化能耗和碳排放,从而提供了有关提高DFL可持续性的见解。方法:这项工作提出了Greendfl,这是一个完全可实现的框架,已集成到现实世界的DFL平台中。greendfl系统地分析了各种因素的影响,包括硬件加速器,模型架构,通信介质,数据分布,网络拓扑和联邦规模,对DFL系统的可持续性。此外,开发了一种可持续性感知的聚合算法(GREENDFL-SA)和节点选择算法(GREENDFL-SN),以优化能源效率并减少DFL培训中的碳排放。结果:经验实验是在多个数据集上进行的,在DFL生命周期的不同阶段测量能耗和碳排放。结果表明,本地培训主导了能耗和碳排放,而沟通的影响相对较小。使用GPU代替CPU来优化模型复杂性,并从策略上选择参与节点可显着提高可持续性。此外,使用有线通信,尤其是光纤,有效地减少了通信阶段的能源消耗,同时整合早期停止机制进一步最小化了总体排放。结论:拟议的Greendfl提供了一种评估DFL系统可持续性的全面和实用方法。此外,它提供了提高DFL环境效率的最佳实践,从而使可持续性考虑在现实世界部署中更具可行性。
摘要 - 痴呆症是一种渐进疾病,会损害个人的认知健康和日常功能,而轻度认知障碍(MCI)通常是其前体。对MCI到止血转换的预测进行了充分的研究,但是以前的研究几乎一直集中在传统的机器学习(ML)(基于基于的方法)上,这些方法可以重新分享敏感的临床信息以培训预测模型。本研究提出了一种使用联邦学习(FL)进行隐私增强解决方案,以训练MCI-to-Dementia转换的预测模型,而无需共享敏感数据,掌握社会人口统计学和认知指标。我们模拟并比较了两个网络体系结构,即点对点(P2P)和客户端服务器,以实现协作学习。我们的结果表明,FL具有与集中式ML相当的预测性能,并且每个临床部位在没有共享本地数据的情况下显示出相似的表现。此外,FL模型的预测性能优于未经协作的训练的特定地点模型。这项工作强调了FL可以消除对数据共享的需求,而不会损害模型功效。
hypefl:一种新型基于区块链的建筑,使用联合学习和合作感知完全连接的自动驾驶汽车系统
医疗保健中的联邦学习(FL)患有非相同分布的(非IID)数据,从而影响模型收敛和性能。虽然现有的非IID问题解决方案通常不会量化联邦客户之间的非IID性质程度,但评估它可以改善培训经验和成果,尤其是在不熟悉数据集的现实世界中。本文提出了一种实用的非IID评估方法,用于医疗分割问题,强调了其在佛罗里达州的重要性。我们提出了一种简单而有效的解决方案,该解决方案利用了医疗图像的嵌入空间和对其元数据计算的统计测量结果。我们的方法是为医学成像而设计的,并集成到联邦平均值中,通过降低最遥远的客户的贡献,将其视为离群值,从而改善了模型的概括。此外,它通过引入客户的基于距离的聚类来增强模型个性化。据我们所知,这种方法是第一个使用基于距离的技术来为医学成像域内非IID问题提供实际解决方案的方法。此外,我们验证了三个公共FL成像放射学数据集的方法(Fets(Pati等人,2021),前列腺(Liu等人,2020b),(Liu等人,2020a)和Fed-Kits2019(Terrail等人,2022)))在各种放射学成像方案中证明其有效性。关键字:联合学习,非IID数据,个性化,概括,医学细分,医学成像。
CS&it,Jain(被视为大学的大学)摘要:医疗保健部门正在经历各种健康数据的激增,涵盖了医疗成像,电子健康记录和可穿戴技术的实时传感器读数。通过促进更好的诊断准确性,定制的治疗方法以及对疾病的发展方式,整合这些多模式数据集具有改善医疗服务的巨大潜力。但是,在各个机构中集中了这些敏感的患者数据,引起了严重的隐私问题,并引发了围绕数据管理和行政监督的复杂问题。经过的学习已经浮出水面,作为利用可用数据的潜在方法,同时维护患者的隐私。联邦学习(FL)促进了一种协作方法,以模拟各个医疗机构之间的培训,使他们可以共同努力而无需交换其原始数据。本研究提出了一个专门设计用于整合多模式健康数据的创新FL框架。我们的方法解决了联合环境中数据可变性和模型集成问题的问题,目的是提高诊断精度和个性化治疗建议,同时保持患者数据的机密性。关键字:联合学习,多模式健康数据,隐私机器学习,电子健康记录(EHRS),医学成像整合,模型聚合个性化治疗计划
摘要 - 机器人要探索联合学习(FL)设置至关重要,在这些设置中,几个并行部署的机器人可以独立学习,同时还可以彼此分享他们的学习。现实世界中的这种协作学习要求社交机器人动态适应不可预测和不可预测的情况和不同的任务设置。我们的工作通过探索一个模拟的客厅环境来帮助解决这些挑战,在该环境中,机器人需要学习其行为的社会适当性。首先,我们提出了联合根(FedRoot)平均,这是一种新型的体重聚集策略,它使客户从基于任务的学习中进行学习。第二,为了适应具有挑战性的环境,我们将Fedroot扩展到联合潜伏的生成重播(FedLgr),这是一种新颖的联盟持续学习(FCL)策略,该策略使用基于FedRoot的重量聚集,并将每个客户嵌入了每个客户的生成器模型,以促进伪造的功能嵌入,以使知识的特征嵌入者忽略了一种资源良好的效果。我们的结果表明,基于FedRoot的方法提供竞争性能,同时也导致资源消耗量大幅度降低(CPU使用率高达86%,GPU使用率高达72%)。此外,我们的结果表明,基于FedRoot的FCL方法的表现优于其他方法,同时还提供了有效的解决方案(最多84%的CPU和92%的GPU使用率),FedLGR在评估中提供了最佳结果。