Berner,A.,Henkel,J.,Woodruff,M.A.,Steck,R.,Nerlich,M.,Schuetz,M.A。,&Hutmacher,D.W。(2015)。 延迟的微创注入同种异性骨髓基质细胞表可再生卵临床动物模型中的大骨缺陷。 干细胞转化医学,4(5),503-512。 Cheong,V。S.,Fromme,P.,Mumith,A.,Coathup,M.J。,&Blunn,G。W.(2018)。 新型的自适应有限元算法,以预测添加剂生产的多孔植入物中的骨向内生长。 生物医学材料的机械行为杂志,87,230-239。 doi:https://doi.org/10.1016/j.jmbbm.2018.07.019 Cipitria,A.,Reichert,J.C.,Epari,D.R.,D.R.,Saifzadeh,S. 。 。 Hutmacher,D。W.(2013)。 多丙酮酸支架和降低的RHBMP-7剂量,用于在绵羊胫骨中再生。 生物材料,34(38),9960-9968。 Dimitriou,R.,Jones,E.,McGonagle,D。和Giannoudis,P。V.(2011)。 骨骼再生:当前的概念和未来的方向。 BMC Medicine,9(1),66。DOI:10.1186/1741-7015-9-66 Emara,K。M.,Diab,R。A.和Emara,A。K.(2015)。 裂缝非工会管理的最新生物学趋势。 世界骨科杂志,6(8),623-628。doi:10.5312/wjo.v6.i8.623 Fitzpatrick,N.,Sajik,D。,&Farrell,M。(2013)。 猫胸腔关节固定术使用根据经皮板关节固定术的原理应用的前轮廓背板。 兽医和比较骨科与创伤学,26(05),399-407。 当前的干细胞研究与治疗,3(4),254-264。Berner,A.,Henkel,J.,Woodruff,M.A.,Steck,R.,Nerlich,M.,Schuetz,M.A。,&Hutmacher,D.W。(2015)。延迟的微创注入同种异性骨髓基质细胞表可再生卵临床动物模型中的大骨缺陷。干细胞转化医学,4(5),503-512。Cheong,V。S.,Fromme,P.,Mumith,A.,Coathup,M.J。,&Blunn,G。W.(2018)。 新型的自适应有限元算法,以预测添加剂生产的多孔植入物中的骨向内生长。 生物医学材料的机械行为杂志,87,230-239。 doi:https://doi.org/10.1016/j.jmbbm.2018.07.019 Cipitria,A.,Reichert,J.C.,Epari,D.R.,D.R.,Saifzadeh,S. 。 。 Hutmacher,D。W.(2013)。 多丙酮酸支架和降低的RHBMP-7剂量,用于在绵羊胫骨中再生。 生物材料,34(38),9960-9968。 Dimitriou,R.,Jones,E.,McGonagle,D。和Giannoudis,P。V.(2011)。 骨骼再生:当前的概念和未来的方向。 BMC Medicine,9(1),66。DOI:10.1186/1741-7015-9-66 Emara,K。M.,Diab,R。A.和Emara,A。K.(2015)。 裂缝非工会管理的最新生物学趋势。 世界骨科杂志,6(8),623-628。doi:10.5312/wjo.v6.i8.623 Fitzpatrick,N.,Sajik,D。,&Farrell,M。(2013)。 猫胸腔关节固定术使用根据经皮板关节固定术的原理应用的前轮廓背板。 兽医和比较骨科与创伤学,26(05),399-407。 当前的干细胞研究与治疗,3(4),254-264。Cheong,V。S.,Fromme,P.,Mumith,A.,Coathup,M.J。,&Blunn,G。W.(2018)。新型的自适应有限元算法,以预测添加剂生产的多孔植入物中的骨向内生长。生物医学材料的机械行为杂志,87,230-239。 doi:https://doi.org/10.1016/j.jmbbm.2018.07.019 Cipitria,A.,Reichert,J.C.,Epari,D.R.,D.R.,Saifzadeh,S.。。Hutmacher,D。W.(2013)。多丙酮酸支架和降低的RHBMP-7剂量,用于在绵羊胫骨中再生。生物材料,34(38),9960-9968。Dimitriou,R.,Jones,E.,McGonagle,D。和Giannoudis,P。V.(2011)。骨骼再生:当前的概念和未来的方向。BMC Medicine,9(1),66。DOI:10.1186/1741-7015-9-66 Emara,K。M.,Diab,R。A.和Emara,A。K.(2015)。裂缝非工会管理的最新生物学趋势。世界骨科杂志,6(8),623-628。doi:10.5312/wjo.v6.i8.623 Fitzpatrick,N.,Sajik,D。,&Farrell,M。(2013)。猫胸腔关节固定术使用根据经皮板关节固定术的原理应用的前轮廓背板。兽医和比较骨科与创伤学,26(05),399-407。当前的干细胞研究与治疗,3(4),254-264。Fröhlich,M.,Grayson,W。L.,Wan,L。Q.,Marolt,D.,Drobnic,M。,&Vunjak-Novakovic,G。(2008)。 组织工程骨移植:生物学需求,组织培养和临床相关性。 Giannoudis,P.,Panteli,M。和Calori,G。(2014年)。 骨骼康复:钻石概念。 在G. Bentley中(ed。 ),欧洲教学讲座(第1卷 14,pp。 3-16):施普林格柏林海德堡。 Gomez-Barrena,E.,Rosset,P.,Lozano,D.,Stanovici,J.,Emmthaller,C。和Gerbhard,F。(2015)。 骨断裂愈合:延迟的工会和不连接中的细胞疗法。 骨,70,93-101。 doi:10.1016/j.bone.2014.07.033Fröhlich,M.,Grayson,W。L.,Wan,L。Q.,Marolt,D.,Drobnic,M。,&Vunjak-Novakovic,G。(2008)。组织工程骨移植:生物学需求,组织培养和临床相关性。Giannoudis,P.,Panteli,M。和Calori,G。(2014年)。骨骼康复:钻石概念。在G. Bentley中(ed。),欧洲教学讲座(第1卷14,pp。3-16):施普林格柏林海德堡。Gomez-Barrena,E.,Rosset,P.,Lozano,D.,Stanovici,J.,Emmthaller,C。和Gerbhard,F。(2015)。 骨断裂愈合:延迟的工会和不连接中的细胞疗法。 骨,70,93-101。 doi:10.1016/j.bone.2014.07.033Gomez-Barrena,E.,Rosset,P.,Lozano,D.,Stanovici,J.,Emmthaller,C。和Gerbhard,F。(2015)。骨断裂愈合:延迟的工会和不连接中的细胞疗法。骨,70,93-101。 doi:10.1016/j.bone.2014.07.033
1 香港城市大学赛马会动物医学及生命科学院兽医临床科学系,香港九龙塘,中国;stefhobit@cityu.edu.hk (SH);jacqutam4@cityu.edu.hk (WYJT);maypy.tse@cityu.edu.hk (MT);yingchai_chai@126.com (YC);c.mcdermott@cityu.edu.hk (CTM) 2 香港城市大学兽医中心,香港,中国;francois.saulnier@vsh.com.hk 3 香港城市大学兽医诊断实验室,香港九龙塘,中国;fraser.hill@cityuvdl.com.hk 4 香港城市大学赛马会动物医学及生命科学院传染病及公共卫生系,香港九龙塘,中国; omid.nekouei@cityu.edu.hk 5 非营利兽医诊所,香港太子,中国;ec200100@gmail.com 6 家庭兽医火炭,沙田,香港,中国;wietzb@yahoo.co.uk 7 香港城市大学动物健康及福利中心,九龙塘,香港,中国 * 通讯地址:vanessa.barrs@cityu.edu.hk
1 悉尼大学科学学院悉尼兽医学院,坎珀当 2050,澳大利亚;elizabeth.jenkins@sydney.edu.au(EJ);cdav6397@uni.sydney.edu.au(CD);maura.carrai@sydney.edu.au(MC);michael.ward@sydney.edu.au(MPW);julia.beatty@sydney.edu.au(JAB)2 默多克大学兽医与生命科学学院,默多克 6150,澳大利亚;SO'Kee ffi@murdoch.edu.au 3 珀斯猫医院,西利德维尔 6007,澳大利亚;drmartine@perthcat.vet 4 贝德福德-黛安内拉兽医中心,贝德福德 6052,澳大利亚; louise_bedfordvet@hotmail.com 5 巴里大学兽医学系,Valenzano,70121 巴里,意大利;costantina.desario@uniba.it (CD);canio.buonavoglia@uniba.it (CB);nicola.decaro@uniba.it (ND) * 通讯地址:vanessa.barrs@sydney.edu.au;电话:+ 61-2-9351-3437
雷帕霉素,又称西罗莫司,是一种大环内酯类药物,是雷帕霉素机制靶点(以前称为哺乳动物靶点)的抑制剂,有望成为治疗猫 HCM 的新型疗法。5–10 mTOR 是一种非典型丝氨酸/苏氨酸蛋白激酶,可与多种蛋白质结合形成 2 种多蛋白复合物中的 1 种:mTOR 复合物 1 (mTORC1) 和 mTOR 复合物 2 (mTORC2)。5,11,12 这两种复合物在促进胚胎发生和出生后心血管健康方面发挥着不同的作用,具有不同的上游和下游靶点。mTORC1 的激活可促进合成代谢过程,从而增加蛋白质和脂质的合成,下调分解代谢过程以减少自噬(细胞清除受损蛋白质和细胞器的能力),并在响应机械超负荷发出适应性心脏重塑信号方面发挥重要作用。 5 尽管尚未完全了解,但 mTORC2 在调节葡萄糖和脂质代谢中发挥作用,并促进心肌细胞存活、细胞骨架组织和适当的细胞极性。
简单的摘要:乳腺肿瘤在猫中很常见,表现出具有高肿瘤复发的侵略性行为。因此,紧急的新型和有效的治疗方案是紧迫的。单克隆抗体(mAbs; adc)广泛用于人类乳腺癌治疗,抑制HER2二聚化并导致细胞凋亡。此外,与酪氨酸激酶抑制剂(TKI)的药物组合在患者的治疗方案中很有价值。在这项研究中,测试了两个mAb和一个ADC,以及mabs和mAbs和lapatinib(TKI)之间的合并方案,以解决是否可以将药物用作猫乳腺肿瘤中的新治疗选择。在猫细胞系中,所有化合物和综合处理均显示出有价值的抗增殖作用,以及通过凋亡的保守细胞死亡机制,其中在HER2的细胞外结构域中发现的突变表明没有免疫疗法抗性。
摘要:尽管现代抗逆转录病毒疗法在控制病毒转录和明显的病毒相关发病率方面非常有效,但由于前病毒整合到长寿命的储存细胞中,它无法完全根除感染宿主体内的逆转录病毒。因此,免疫缺陷病毒感染患者必须终生接受抗病毒治疗,以控制病毒血症、病毒传播和感染相关发病率。不幸的是,患者很难持续接受终生抗病毒治疗,并且可能与治疗特异性发病率有关。患者权益倡导者一直在呼吁采用新方法来实现逆转录病毒根除。作为一项概念验证研究,我们在一系列体外实验中采用了慢病毒传递的 RNA 定向基因编辑策略,试图降低猫免疫缺陷病毒 (FIV) 前病毒载量、病毒转录和感染性病毒体的产生。我们发现,用 FIV 特异性成簇规律散布短回文重复序列 (CRISPR) 相关蛋白 9 (Cas9) 基因编辑工具处理的猫 T 淋巴细胞系 (MCH5-4) 导致无细胞病毒 RNA 相对于对照细胞减少。两步 FIV 感染研究证实了感染潜力降低 — 用从 FIV 感染和 CRISPR 慢病毒处理的细胞中收获的无细胞 FIV 感染的幼稚 MCH5-4 细胞的整合前病毒 DNA 少于对照细胞。这项研究代表了朝着开发一种有效的在免疫缺陷病毒感染宿主中根除原病毒的方法迈出的初步步伐。
结果 1,341 名美国兽医完成了调查。兽医对为健康成年犬接种疫苗最担心的是过敏反应、注射部位疼痛和嗜睡;对于猫,这些担忧包括疫苗相关肉瘤、嗜睡和注射部位疼痛。兽医报告说,主人提到的最常见问题包括宠物不出门、不需要接种疫苗、接种疫苗会导致慢性或严重疾病以及费用。兽医报告说,自从 COVID-19 疫苗广泛普及以来,越来越多的狗和猫主人不愿意或抵制狂犬病疫苗和核心疫苗。兽医对当地 COVID-19 反疫苗接种情绪的看法与疫苗抗拒或担心的客户数量的增加之间存在联系。
其他心肌病表型(限制性疾病,扩张性心肌病,非特异性心肌病)以及很少与肿瘤,促炎,短暂性肌肉拨动 - 拨号盘增厚或严重的全身性炎症有关。2,5,6其他心肌病中的下ate发病率可能是由于与HCM相比,而不是真正的降低风险,可能是由于不常见的原因。这些血栓形成(TE)通常在主动脉三杆菌中寄养,或者不太常见的是在右锁骨下动脉中,引起缺血,剧烈疼痛,寒冷的肢体和受影响肢体的减少。1,7个血栓也已在肠系膜血管,儿童,大脑和肺部中检测到。8,9由于相关的发病率高,高死亡率在7天时高达55.9%,据报道的安乐死率最高为90%。1,5对于那些生存的人,那里
缩写: DOI:免疫持续时间 FCV:猫杯状病毒 FCoV/FIP:猫冠状病毒/猫传染性腹膜炎 FeLV:猫白血病病毒 FHV:猫疱疹病毒 FPV:猫泛白细胞减少症病毒 MDA:母源抗体 MLV:减毒活疫苗 PV:初次接种
猫的疫苗接种 兽医医学的最新进展使得可用于猫的疫苗数量和类型有所增加,并且其安全性和有效性也在不断提高。有些疫苗或多或少是常规建议所有猫都接种的(“核心”疫苗),而另一些疫苗则根据情况更有选择性地使用。然而,在所有情况下,为每只猫选择正确的疫苗接种计划,包括重复接种或加强接种的频率,都需要专业建议。目前,猫可以接种几种不同疾病的疫苗: 美国猫科动物从业者协会(AAFP)建议所有小猫和猫接种“核心”疫苗: 1. 由 FPL 病毒或猫细小病毒引起的猫泛白细胞减少症,FPV 或 FPL(也称为猫传染性肠炎) 2. 由 FVR 病毒(也称为疱疹病毒 1 型,FHV-1)引起的猫病毒性鼻气管炎,FVR 3. 由各种猫杯状病毒株 FCV 引起的猫杯状病毒病 4. 由狂犬病毒引起的狂犬病 “非核心”或自由裁量疫苗,建议用于有接触特定疾病实际风险的小猫和猫: 1. 猫衣原体感染 2. 由猫白血病病毒 FeLV 引起的猫白血病综合症 3. 由 FIP 病毒或猫冠状病毒引起的猫传染性腹膜炎(FIP)由原生动物寄生虫贾第鞭毛虫引起的贾第鞭毛虫病 5. 由细菌支气管败血性博德特氏菌引起的博德特氏菌病 6. 癣 7. 猫免疫缺陷病毒 (FIV) 疫苗如何起作用? 疫苗通过刺激人体的防御机制或免疫系统产生针对特定微生物(例如病毒、细菌或其他传染性生物)的抗体。然后,动物的免疫系统准备对该微生物的未来感染做出反应。该反应将预防感染或减轻感染的严重程度并促进快速康复。因此,疫苗接种模仿或模拟了宠物从特定传染源的自然感染中恢复后所具有的保护或免疫力。免疫系统很复杂,涉及动物体内各种细胞、组织和器官的相互作用。参与免疫反应的主要细胞是白细胞,主要组织是淋巴组织,例如淋巴结。