Kirana 工厂由不同实验室中的多个微加工平台组成。Kirana 技术人员可以完全控制这些平台,从而实现极大的灵活性,以满足客户的要求。微加工装置配备了不同的激光源,从纳秒到飞秒不同波长的激光,以及用于在线检查的可定制视觉系统
横截面是一种关键的样品制备技术,被广泛用于各种应用,它能够研究埋层和地下特征或缺陷。最先进的横截面方法各有优缺点,但通常都需要在吞吐量和准确性之间进行权衡。机械方法速度快但准确性低。另一方面,基于离子的方法,如聚焦离子束 (FIB),分辨率高但速度慢。激光器可以潜在地改善这种权衡,但它也面临多重挑战,包括产生热影响区 (HAZ)、过大的光斑尺寸以及材料再沉积。在这项工作中,我们首次利用飞秒脉冲激光器,这种激光器已被证明可产生极小甚至零的 HAZ,用于快速创建质量可与 FIB 横截面相媲美的大横截面。该激光器集成了靶向 CO 2 气体输送系统,用于再沉积控制和光束尾部削减,以及硬掩模,用于顶面保护和进一步缩小有效光斑尺寸。通过现实世界的例子展示了所提出的系统的性能,这些例子比较了激光和 FIB 横截面技术产生的吞吐量和质量。
A. Goffin、J. Griff-McMahon、I. Larkin 和 HM Milchberg * 马里兰大学电子与应用物理研究所,马里兰州帕克分校,20742,美国 *milch@umd.edu 大气气溶胶(例如雾中的水滴)会通过散射和吸收干扰激光传播。飞秒光学细丝已被证明可以清除雾区,从而改善后续脉冲的传输。但详细的除雾机制尚未确定。在这里,我们直接测量和模拟半径约为 5 μm 的水滴(典型的雾)在飞秒细丝特有的光学和声学相互作用影响下的动态情况。我们发现,对于由准直近红外飞秒脉冲崩溃产生的细丝,主要的液滴清除机制是激光光学破碎。对于此类细丝,由细丝能量沉积在空气中发射的单周期声波不会影响液滴,也不会引起可忽略的横向位移,因此对雾的清除作用也微乎其微。只有当非细丝脉冲的聚焦程度很高时,局部能量沉积远远超过细丝,声波才会显著取代气溶胶。
摘要:20 世纪 90 年代末,锁模飞秒激光器被引入,成为合成和测量光频率的重要新工具。飞秒激光器的简单性、坚固性和更高的精度使其在光学频率计量领域占有重要地位。此外,它们的使用正在开发基于载波包络相位精确控制的重要新时域应用。预计参考原子和离子中的光学跃迁的窄线宽激光器将很快成为任何类型的最佳电磁频率参考,其预计分数频率不稳定性低于 1 × 10 -15 τ -1/2,不确定性接近 1 × 10 -18 。当与这种超精密频率标准结合使用时,飞秒激光器可用作宽带合成器,将输入光频率相位相干地转换为跨越数百太赫兹的光频率阵列和可计数的微波频率。综合过程中引入的过量分数频率噪声可接近1×10 -19 的水平。
摘要:20 世纪 90 年代末,锁模飞秒激光器被引入,成为合成和测量光频率的重要新工具。飞秒激光器的简单性、坚固性和更高的精度使其在光学频率计量领域占有重要地位。此外,它们的使用正在开发基于载波包络相位精确控制的重要新时域应用。预计参考原子和离子中的光学跃迁的窄线宽激光器将很快成为任何类型的最佳电磁频率参考,其预计分数频率不稳定性低于 1 × 10 -15 τ -1/2,不确定性接近 1 × 10 -18 。当与这种超精密频率标准结合使用时,飞秒激光器可用作宽带合成器,将输入光频率相位相干地转换为跨越数百太赫兹的光频率阵列和可计数的微波频率。综合过程中引入的过量分数频率噪声可接近1×10 -19 的水平。
摘要:20 世纪 90 年代末,锁模飞秒激光器被引入作为合成和测量光频率的重要新工具。飞秒激光器的简单性、稳定性和更高的精度使其在光频率计量领域占有重要地位。此外,它们的使用正在开发基于精确控制载流子包络相位的重要新时域应用。预计参考原子和离子中的光学跃迁的窄线宽激光器将很快成为任何类型的最佳电磁频率参考,预计分数频率不稳定性低于 1 × 10 -15 τ -1/2,不确定性接近 1 × 10 -18 。与此类超精密频率标准结合使用时,飞秒激光器可充当宽带合成器,将输入光频率相位相干地转换为跨越数百太赫兹的光频率阵列和可计数的微波频率。合成过程中引入的过量分数频率噪声可接近 1 × 10 -19 的水平。
A. Goffin、J. Griff-McMahon、I. Larkin 和 HM Milchberg * 马里兰大学电子与应用物理研究所,马里兰州帕克分校,20742,美国 *milch@umd.edu 大气气溶胶(例如雾中的水滴)会通过散射和吸收干扰激光传播。飞秒光学细丝已被证明可以清除雾区,从而改善后续脉冲的传输。但详细的除雾机制尚未确定。在这里,我们直接测量和模拟半径约为 5 μm 的水滴(典型的雾)在飞秒细丝特有的光学和声学相互作用影响下的动态情况。我们发现,对于由准直近红外飞秒脉冲崩溃产生的细丝,主要的液滴清除机制是激光光学破碎。对于此类细丝,由细丝能量沉积在空气中发射的单周期声波不会影响液滴,也不会引起可忽略的横向位移,因此对雾的清除作用也微乎其微。只有当非细丝脉冲的聚焦程度很高时,局部能量沉积远远超过细丝,声波才会显著取代气溶胶。
tions(UPPE)求解器[38]。这些结果与等离子体柱的整体尺寸相符,但也表明整个等离子体具有丰富的细尺度结构(正如我们在多丝状区域所预期的那样[39-41])。在本文中,我们进行了简化,没有包括细尺度等离子体扰动。由于强度钳制,等离子体柱近似为具有恒定密度的中心核,然后沿径向下降 100μm,在外半径 r pl 处密度为零。速度分布由我们的 PIC 代码确定:给定 E(⃗x,t),空气以 W 速率电离[35],新电子在脉冲的剩余部分中加速[28](执行这些计算的代码包含在[31]中)。一般而言,速度分布受 γ = 1 附近强场电离细节(例如 [ 42 ])和成丝过程中激光脉冲变形的影响。在本文中,我们进一步简化并假设电子以零初始速度电离,然后由高斯脉冲的剩余部分加速(具有 ˆ x 极化并在 + z 方向上传播)。整体而言,初始 N e 是高度非麦克斯韦的,在 100 Torr 时具有峰值动能 K tail ≃ 5 eV,平均动能 K avg ≃ 0. 6 eV,而在 1 Torr 时这些值增加到 K tail ≃ 16 eV 和 K avg ≃ 2 eV。对于 3.9 µ m 激光器,动能大约大 25 倍,因为激光强度相当且能量按 λ 2 缩放。接下来我们考虑等离子体柱的演变。给定 N e ,我们构造等离子体的横向薄片,在纵向 ˆ z 使用周期性边界条件(由于电子速度只是 c 的一小部分,因此这对领先阶有效),并使用我们的 PIC 代码模拟径向演变。德拜长度相当小:λ Debye ≃ 10 nm,因此我们使用能量守恒方法 [43] 来计算洛伦兹力。电子-中性弹性碰撞频率 ν eN 取决于 O 2 和 N 2 的截面,对于我们的能量来说大约为 10 ˚ A 2 [44]。反过来,电子-离子动量转移碰撞频率由 ν ei = 7 给出。 7 × 10 − 12 ne ln(Λ C ) /K 3 / 2 eV ,其中 Λ C = 6 πn e λ 3 Debye [45]。然后将得到的径向电流密度 J r 和电子密度 ne 记录为半径和时间的函数(更多详细信息可参见 [31] 的第 3 部分)。这些结果可以很好地分辨,网格分辨率为 ∆ x = ∆ y = 2 µ m,等离子体外缘的大粒子权重为 ∼ 10。图 1 中给出了 100、10 和 1 Torr 下 PW 模拟中λ = 800 nm 的电子数密度。t = 0 时等离子体外缘具有简化的阶跃函数轮廓,在半径 r pl = 0 处 ne = 10 20 m − 3。 5 毫米。因此,除了从等离子体边缘发射出脉冲波外,在内部激发出约 90 GHz 的相干径向等离子体频率振荡 [ 46 ],在表面激发出约 63 GHz 的 SPP [ 33 , 34 , 47 ]。扩展到中性大气中的 PW(r > r pl)对密度不敏感
摘要:20 世纪 90 年代末,锁模飞秒激光器被引入,成为合成和测量光频率的重要新工具。飞秒激光器的简单性、坚固性和更高的精度使其在光学频率计量领域占有重要地位。此外,它们的使用正在开发基于载波包络相位精确控制的重要新时域应用。预计参考原子和离子中的光学跃迁的窄线宽激光器将很快成为任何类型的最佳电磁频率参考,其预计分数频率不稳定性低于 1 × 10 -15 τ -1/2,不确定性接近 1 × 10 -18 。当与这种超精密频率标准结合使用时,飞秒激光器可用作宽带合成器,将输入光频率相位相干地转换为跨越数百太赫兹的光频率阵列和可计数的微波频率。综合过程中引入的过量分数频率噪声可接近1×10 -19 的水平。