我们建议使用量子信息概念来表征高温下非微扰束缚态的热诱导熔化。我们应用张量网络在伊辛量子场论的静态和动态环境中研究这一想法,其中束缚态是受限的费米子对——介子。介子熔化的平衡特征是在热态第二 R'enyi 熵的温度依赖性中确定的,该熵从指数到幂律缩放不等。在非平衡状态下,我们将热淬火后反射熵从振荡到线性增长行为的转变确定为相关特征。这些分析应用范围更广,为描述量子多体和高能物理中的介质内介子现象带来了新方法。
“经典阴影”是未知量子状态的估计值,它是由适当分布的随机测量在该状态的副本上构成的[1]。在本文中,我们分析了使用随机匹配电路获得的经典阴影,这些阴影与费米子高斯大学相对应。我们证明,在连续的匹配电路组上,HAAR分布的前三个时刻等于仅在也是Clifford Unitaries的Matchgate电路上的离散均匀分布的矩等于;因此,后者形成了“匹配3设计”。这意味着由两个集合产生的经典阴影在功能上是等效的。我们展示了如何使用这些匹配阴影来有效估计任意量子状态和费米子高斯状态之间的内部产品,以及本地费米子操作员和其他各种数量的期望值,从而超过了先前工作的能力。作为一个具体的应用,这使我们能够应用波函数约束,这些限制控制量子辅助尺寸量子量蒙特卡洛算法(QC-AFQMC)[2]中的fermion符号问题,而无需原始方法指数后处理成本。
fermion四重奏形成超导冷凝物而不是范式库珀对的物质阶段,是实验和理论研究的复发主题。然而,缺乏对电荷4 e超导性作为量子阶段的全面显着理解。在这里,我们研究了具有吸引人的哈伯德型相互作用的两轨紧密结合模型。这样的模型自然地提供了玻色的凝结物作为电子四重奏的极限并支持电荷-4 E超导性,正如我们通过将其映射到此扰动限制中的Spin-1/2链所显示的那样。使用密度矩阵重新归一化组计算为一维情况,我们进一步确定基态确实是4 e电荷载体的超氟相位,并且该阶段可以稳定在扰动状态之外。重要的是,我们证明,即使对于几乎脱钩的轨道,4 E缩合也占主导地位,这是电子材料中更可能的情况。我们的模型为4 e超导性的实验和理论探索铺平了道路,并为将来的研究提供了一个自然的起点,超过一个维度或更复杂的4 e状态。
Altermagnet是晶体学旋转对称性破坏自旋顺序的状态,尽管表现出Kramers非脱位带,但具有净零磁化。在这里,我们表明,单层,伯纳尔·比拉耶(Bernal Bilayer)和菱形三层石墨烯(Trilayer)在单层中与动量无关的局部自旋列秩序产生了p波 - 波,d波和f波 - altermagnets,从而在上面构成线性,二甲和立方体的跨度,并在其中描述了一个和观点的拓扑。 3次谐波在相互空间中。相同的结合也包含在带有Majorana Altermagnets的自旋三型列型超导体内。总的来说,这些发现突出了电子带结构在识别量子材料中这种外来磁性方面的重要性。我们描述了面内磁场对Altermagnets的影响,并在这些系统中提出了新型的自旋偏置拟南芥。
我们提出了一种数模量子算法,用于模拟 Hubbard-Holstein 模型,该模型描述了强关联费米子-玻色子相互作用,该算法采用具有超导电路的合适架构。它由一个由谐振器连接的线性量子比特链组成,模拟电子-电子 (ee) 和电子-声子 (ep) 相互作用以及费米子隧穿。我们的方法适用于费米子-玻色子模型(包括 Hubbard-Holstein 模型描述的模型)的数模量子计算 (DAQC)。我们展示了 DAQC 算法的电路深度减少,该算法是一系列数字步骤和模拟块,其性能优于纯数字方法。我们举例说明了半填充双位点 Hubbard-Holstein 模型的量子模拟。在这个例子中,我们获得了大于 0.98 的保真度,表明我们的提议适合研究固态系统的动态行为。我们的提议为计算化学、材料和高能物理的复杂系统打开了大门。
我们在时间依赖性的gutzwiller方法中研究了哈伯德模型中的顺序参数波动。虽然在弱耦合极限中,我们发现幅度波动是短暂的,这是由于与准粒子连续的边缘的能量的退化(并且与Hartree-fock - rpa理论一致),因此这些幅度在增加相互作用后在边缘下方移动。因此,我们的计算预测了强耦合超导体,冷原子费米式冷凝物以及强烈相互作用的电荷和自旋密度波系统中的阶参数的未阻尼振幅(HIGGS)振荡。我们提出了一个实验实现,以检测未掺杂的铜层和相关材料中自旋型希格斯模式,在这些材料中,由于Dzyaloshinsky-Moriya相互作用,它可以将其与平面外铁磁激发相结合,通过Faraday效应可见。
在最近的一篇论文中[物理学。修订版d 102,016020(2020)],使用伪量子电动力学来模拟电子之间的库仑相互作用,并确定二维dirac样系统中的质量重新归一化。在本文中,我们通过在分隔两个介电的平面界面以一定距离检查该系统来扩展这些发现。使用随机相近似,我们计算重新归一化组的功能,并显示质量,费米速度的行为和费米恩场的异常维度如何受此界面的存在影响。为了体现我们公式的应用,我们计算了该界面对二维材料中重归于重量化的能带隙的影响。在适当的限制下,我们的结果恢复了上述出版物中报告的相应的结果,以及其他结果。
在这项工作中,我们探讨了曲面石墨烯结构的电子性质(称为石墨烯虫洞)的应变和曲率E ff。电子动力学是通过无质量的dirac fermion连接依赖性的费米速度来描述的。此外,该菌株还会产生伪磁性载体的潜力。对于各向同性应变张量,纺纱场的分离成分表现出超对称(SUSY)电位,具体取决于离心项和外部磁场。在没有外部磁场的情况下,应变会产生指数的振幅,而曲率会导致波函数的功率 - 极度阻尼。自旋 - 呈耦合耦合破坏了上和下旋子分量之间的手性对称性,从而导致波型在虫洞的上部或下区域的增加,即取决于自旋数。通过添加均匀的磁场,E FF电势表现出渐近二次剖面和喉部附近的自旋 - 外屏障。结果,结合状态(Landau水平)限制在虫洞喉咙周围,显示出不对称和自旋依赖性的特征。
摘要我们探索了对一或两个加速检测器(S)与最初混合三局部状态的一键型的加速度探测器(S)的加速度效应。我们表明,霍金辐射会降低物理上可访问的GTN,该GTN在某些危险的鹰式运动中遭受“猝死”。Annovel phe-nomenon首次观察到鹰效应可以在弯曲的时空中产生物理上难以接近的GTN,即弯曲的时空,这是物理上无法访问的GTN的“突然出生”。此结果表明,GTN可以通过某些混合初始状态穿过黑洞的事件范围。我们还通过分析得出了真正三方纠缠(GTE)和量子相干性的权衡关系。
我们在无限量子量子系统的无限时间和时间订购的相关器的无限时间平均值周围的时间波动方面提供了界限。对于物理初始状态,我们的边界预测了时间波动随系统大小的函数的指数衰减。我们在数值上验证了混乱和相互作用的可集成自旋1 /2链的预测,该链满足了我们边界的假设。另一方面,我们从分析和数字上显示的是,对于XX模型,这是一个具有间隙脱合性的非互动系统,temporal波动衰减的多项式衰减具有多种多态的系统大小,用于运算符的系统大小,该操作员位于费米昂表示中,并且在非局部op-ertors的系统大小中呈指数下降。我们的结果表明,相关器的长期时间波动的衰减不能用作混乱的可靠度量或缺乏混乱的指标。
