从 kagome 金属 AV 3 Sb 5 ( A = K, Rb, Cs) 的 2 × 2 电荷有序相的带色散低能连续模型出发,我们表明向列性可以在这种状态下发展,其驱动力要么是三个不等价的 1 × 4 电荷涨落,先于 1 × 4 电荷有序 (CO),要么是实际的零动量 d 波电荷 Pomeranchuk 不稳定性 (PI)。我们从粒子空穴领域的 Kohn-Luttinger 理论出发进行分析,这使我们能够分别在 1 × 4 CO 开始附近和 d 波电荷 PI 附近建立吸引向列通道的发展标准。我们推导出 d 波 PI 的有效电荷费米子模型,其向列磁化率通过随机相位近似 (RPA) 总和给出。相比之下,对于有限动量 CO,RPA 方案就失效了,需要通过将 Aslamazov-Larkin 贡献纳入向列配对顶点来进行改进。然后,我们推导 1 × 4 CO 和 d 波 PI 的 Ginzburg-Landau 势,并在两种情况下获得向列转变温度 T ∼ T nem 时向列磁化的相应解析表达式。从两个电荷费米子模型开始解释以此方式获得的向列响应函数,并强调在哪些假设下可以恢复 Ginzburg-Landau 结果。最后,我们展示了向列特性的增强,其根源在于序参数与弹性变形的耦合。我们的工作建立了在某些铁基超导体中观察到的向列性与钒基 kagome 金属(其中向列相可能由自旋涨落驱动)之间的联系,在这些超导体中,电荷涨落可能导致向列性。我们提出的两种用于稳定 AV 3 Sb 5 中向列态的微观机制,即零动量 d 波 PI 和有限动量 CO 的涨落,可以通过扩散散射实验来区分,这意味着可以判断这两种理论中的哪一种(如果有的话)最有可能描述该相。这两种机制也可能与最近发现的钛基家族 A Ti 3 Sb 5 有关,在该家族中也观察到了向列性。
可以根据各种标准(包括物理特性和冷却成本)对超导体进行分类。** I型超导体**:具有一个临界场(HC),并在达到超导状态和正常状态之间突然过渡。** II型超导体**:拥有两个临界场HC1和HC2,它们是下部临界场以下的完美超导体,并返回到上临界场高于上方的正常电导率。包括无法使用BCS理论或相关理论来解释的重费超导体。这些材料具有独特的特性,可以无视传统的理解,并需要进一步的研究以充分理解其行为。超导体根据其临界温度分为三组:低温超导体(LTS)低于77K,高温超导体(HTS)高于77K,而室温超级导体。77K的分界点显着,因为液氮可用于在此温度下实现材料的超导性。大多数基于元素的超导体是I型,但是存在一些例外,例如niobium,Technetium和某些碳同素同素同素。合金等合金具有超导性能。陶瓷,包括丘比特和YBCO家族,也表现出高温超导性。其他材料(如镍和Ruddlesden-popper相似)被发现在较低温度下是超导的。超导体的分类并不详尽,并且正在进行的研究继续发现具有独特特性的新材料。基于铁的超导体,二吡啶镁,palladates和其他化合物的潜力表现出超导性的潜力。超导体的发现,例如HG3NBF6和HG3TAF6,导致了材料科学领域的重大进步。这些化合物在7 K(-266.15°C; -447.07°F)以下表现出超导性,使其对于各种技术应用都很有价值。最近的突破导致了新的超导体的发展,包括无限层镍和五重杆层方形 - 平面镍镍,这表明在绝对零以上的温度下表现出超导性。此外,科学家在理解超导性的基础机制方面取得了重大进展。例如,发现二吡啶镁(MGB2)的发现使人们对高温超导体所需的特性有了更深入的理解。随着研究人员继续探索超导体材料的前沿,他们正在发现其在尖端技术中应用的新可能性。
Casimir效应[1,2]是由于量子真空波动引起的中性物体的相互作用。对高级材料之间Casimir相互作用的研究是一个新的和有希望的研究领域[3]。一方面,这些材料的异常电子特性会对Casimir力产生有趣的影响。另一方面,Casimir实验的提高质量使它们成为探索材料本身的有用工具。dirac材料(在足够低的能量下遵守二级式dirac-type方程)为我们提供了一个量子场理论与凝结物质之间相互作用的示例。石墨烯是该家族的重要代表[4,5]。处理狄拉克材料是很自然的,可以通过清理的极化张量来描述与电磁场的相互作用,并使用此张量来计算Casimir相互作用。在石墨烯的情况下,在[6]和[7]中使用了这种方法,分别在零和非零温度下使用。值得注意的是,石墨烯的Casimir相互作用的极化张量方法是实验中唯一证实的方法[8-11]。所有真实材料都包含杂质。特定形式的杂质可能会有所不同。杂质是指破坏原始材料清洁度的一般形式。在评论[12-15]中可以找到石墨烯样材料中杂质和缺陷的分类。石墨烯的二维性质减少了可能的缺陷和杂质类型的数量。因此,我们不会尝试关键是,它在居住在石墨烯表面外面的ADATOM或替代杂质在能量上有利。可能会被充电[16-18],磁[15],同位素[19,20],拓扑结构(例如五角大州和七肠)[13,21],或者是缺陷和生长诱发的缺陷等缺陷[22]和群集缺陷[12]。有意的杂质通常称为掺杂剂,而杂质本身可以是故意的,也是无意的(意外)。掺杂用于改变材料的物理或化学特性。石墨烯中的杂质[23,24]可能会将狄拉克附近的线性分散体转换为二次的杂质,这表示杂质引起的质量间隙的外观。描述杂质及其对材料物理特性的影响有不同的方法。常见是具有射击或远程电位[13]和散射方法[25,26]的紧密结合模型。使用石墨烯中的各种杂质类型,我们需要一个良好的模型,该模型可以捕获杂质的通用特性,同时非常简单地用于计算偏振张量。一种成功描述杂质的方法在于将准粒子的传播器添加到描述杂质散射率的参数γ。换句话说,γ是fermion自能的虚构部分。在[27 - 31]中的外部磁场存在大多数情况下,这种描述已应用于石墨烯。我们将自己限制在零温度和消失的化学潜力的情况下。[31]的计算与石墨烯中巨型法拉第旋转的测量[32]非常吻合。原则上γ可以取决于频率,尽管保持频率似乎是一个良好的近似值。在这项工作中,我们忽略了杂质的另一个作用,这是它们产生非零化学势µ的能力。在[10,11]中考虑了石墨烯表面上原子(主要是钠)的一种特殊形式的杂质(主要是钠)及其对Casimir力的影响。根据这些论文,这种杂质会导致石墨烯的质量间隙和非零化学潜力,而不是通过散射速率γ描述的杂质散射的出现。本文的主要目标是研究杂质散射速率γ对石墨烯与理想金属之间Casimir相互作用以及两个石墨烯片之间的影响。这是一个简化的设置。
经典和量子相变中出现的临界现象因其实验相关性和理论意义而备受关注[2,3]。许多临界现象被认为可以用共形场论(CFT)来描述,这些场论具有强相互作用,对二维(即 1 + 1D)以上更高时空维度的研究提出了挑战。最近,一种称为模糊(非交换)球面正则化 [1] 的方法被发明来研究由圆柱几何上的 3D CFT 控制的 3D(即 2 + 1D)临界现象,表示为 S 2 × R 。与传统的格点正则化相比,模糊球面正则化在三维 CFT 的研究中具有许多优势,这主要归功于它在 S 2 × R 中利用了径向量化[ 4 , 5 ]以及精确保存了球面 SO ( 3 ) 对称性[ 6 , 7 ],这一点最近已被令人信服地证明[ 1 , 8 – 11 ]。首先,模糊球面可以直接获取有关临界状态下出现的共形对称性的信息[ 1 , 10 ]。其次,它可以直接提取 CFT 的各种数据,包括共形主算子的众多缩放维度[ 1 , 10 ]、算子积展开系数[ 8 ]和四点相关器[ 9 ]。例如,可以直接从系统的激发能量计算缩放维度,并且可以使用共形扰动进一步提高其精度[12]。第三,模糊球方案适用于各种三维CFT,包括Ising[1]、O(N)Wilson-Fisher、SO(5)非禁闭相变[10]、临界规范理论[10]和缺陷CFT[11]。最后,当哈密顿量经过合理微调时,模糊球正则化表现出令人难以置信的小有限尺寸效应。模糊球正则化的这些优势为探索高效率、高精度和全面的三维CFT提供了激动人心的机会。模糊球正则化考虑了一个微观量子哈密顿量,在连续球面空间中对具有多种口味的费米子进行建模,并将费米子投影到最低球面朗道能级 [ 1 , 6 , 13 ] 。与规则晶格模型相比,模糊球模型在紫外极限下严格保持了连续旋转对称性。得益于通过微调实现的极小的有限尺寸效应,精确对角化 (ED) 和密度矩阵重正则化群 (DMRG) 方法等数值算法在研究 3D Ising CFT 和 SO ( 5 ) 解禁相变的模糊球模型时非常有效。然而,这两种算法的计算成本最终会随着系统尺寸呈指数增长。更重要的是,对于涉及大量费米子口味的情况,ED 和 DMRG 的计算成本很快就会超过实际的资源和时间限制。在这些情况下,使用随时间多项式缩放的方法(例如量子蒙特卡罗 (QMC))来研究模糊球面上的模型将会很有帮助。本文旨在利用 3D Ising CFT 作为示例,展示 QMC 方法在研究模糊球面上的 3D CFT 中的应用。在参考文献 [ 13 , 14 ] 中可以找到有关模糊环面模型的类似讨论。与参考文献 [ 1 ] 中介绍的模糊球面 Ising 模型相比,我们在费米子中引入了一个额外的味道指数,这会导致 QMC 模拟没有符号问题。作为基准,我们提供了数值
Berry相[1]通过绝热循环过程后获得的相位揭示了量子波函数的几何信息,它的概念为理解许多材料的拓扑性质奠定了基础[2–13]。Berry相理论建立在纯量子态上,例如基态符合零温统计集合极限的描述,在有限温度下,密度矩阵通过将热分布与系统所有状态相关联来描述量子系统的热性质。因此,将Berry相推广到混合量子态领域是一项重要任务。已有多种方法解决这个问题[14–21],其中Uhlmann相最近引起了广泛关注,因为它已被证明在多种一维、二维和自旋j系统中在有限温度下表现出拓扑相变[22–26]。这些系统的一个关键特征是 Uhlmann 相在临界温度下的不连续跳跃,标志着当系统在参数空间中穿过一个循环时,底层的 Uhlmann 完整性会发生变化。然而,由于数学结构和物理解释的复杂性,文献中对 Uhlmann 相的了解远少于 Berry 相。此外,只有少数模型可以获得 Uhlmann 相的解析结果 [ 22 – 30 ] 。Berry 相是纯几何的,因为它不依赖于感兴趣量子系统时间演化过程中的任何动力学效应 [ 31 ] 。因此,Berry 相理论可以用纯数学的方式构建。概括地说,密度矩阵的 Uhlmann 相是从数学角度几乎平行构建的,并且与 Berry 相具有许多共同的几何性质。我们将首先使用纤维丛语言总结 Berry 相和 Uhlmann 相,以强调它们的几何特性。接下来,我们将给出玻色子和费米子相干态的 Uhlmann 相的解析表达式,并表明当温度趋近于零时,它们的值趋近于相应的 Berry 相。这两种相干态都可用于构造量子场的路径积分 [32 – 37]。虽然单个状态中允许有任意数量的玻色子,但是泡利不相容原理将单个状态的费米子数限制为零或一。因此,在玻色子相干态中使用复数,而在费米子相干态中使用格拉斯曼数。玻色子相干态也用于量子光学中,以描述来自经典源的辐射 [38 – 41]。此外,相干态的Berry相可以在文献[ 42 – 45 ]中找到,我们在附录A中总结了结果。我们对玻色子和费米子相干态的 Uhlmann 相的精确计算结果表明,它们确实携带几何信息,正如完整概念和与 Berry 相的类比所预期的那样。我们将证明,两种情况下的 Uhlmann 相都随温度平稳下降,没有有限温度跃迁,这与先前研究中一些具有有限温度跃迁的例子形成鲜明对比 [ 22 – 30 ] 。当温度降至零度时,玻色子和费米子相干态的 Uhlmann 相接近相应的 Berry 相。我们对相干态的结果以及之前的观察结果 [ 22 , 24 , 26 ] 表明,在零温度极限下,Uhlmann 相还原为相应的 Berry 相。
BCS超导性理论:由约翰·巴丁(John Bardeen),莱昂·库珀(Leon Cooper)和罗伯特·施里弗(Robert Schrieffer)开发的开创性理论,成功地模拟了I型超导体的特性。关键概念通过与晶格的相互作用围绕着靠近费米水平的电子的配对成库珀对。这种现象是由于与晶格振动相关的电子之间的轻微吸引力,从而导致了声子相互作用。在这种配对状态下,电子行为与单个费米子的行为明显不同。与遵守保利原则的费米子不同,库珀对可以凝结到相同的能量水平,表现出更类似于玻色子的特性。配对会导致电子的能量较低,并在其上方产生能量间隙,从而抑制了碰撞相互作用,从而导致普通电阻率。对于热能小于带隙的温度,材料表现出零电阻率。BCS理论已准确地描述了I型超导体的测量特性,从而通过称为Cooper Pairs的电子对耦合对耦合的电子对设想无电阻传导。was consistent with having coupled pairs of electrons with opposite spins The isotope effect suggested that the coupling mechanism involved the crystal lattice, so this gave rise to the phonon model of coupling envisioned with Cooper pairs Concepts of Condensed Matter Physics Spring 2015 Exercise #1 Concepts of condensed matter physics Spring 2015 Exercise #1 Due date: 21/04/2015 1.石墨烯中Dirac Fermions的鲁棒性 - 我们知道石墨烯的晶格结构具有独特的对称性,例如Adding long range hopping terms In class we have shown that at low energies electrons in graphene have a doubly degenerate Dirac spectrum located at two points in the Brillouin zone An important feature of this dispersion relation is the absence of an energy gap between the upper and lower bands However, in our analysis we have restricted ourselves to the case of nearest neighbor hopping terms, and it is not clear if the above features survive the addition of more general terms Write down the Bloch- Hamiltonian在下一个最近的邻居和接下来的邻居术语中包括幅度'和''分别绘制了情况= 1,'= 0.4 = 0.4,'= 0.2的频谱表明,Dirac锥体在下一个问题下,在下一个情况下,dirac cons cons cons cons conse cons conse conse conse conse conse的添加 蜂窝晶状体的3倍旋转对称性问题是:什么保护狄拉克频谱,即我们需要违反石墨烯中的固有对称性,以消灭低能的电子的无质量dirac频谱,即蜂窝晶状体的3倍旋转对称性问题是:什么保护狄拉克频谱,即我们需要违反石墨烯中的固有对称性,以消灭低能的电子的无质量dirac频谱,即大多数研究都集中在涉及惰性基质(例如二氧化硅或纤维素)的简单系统上[11,12]。最近,此过程已扩展到环境样本。本文描述了有关材料中超导性质和状态方程的实验和研究。研究人员应回答与氦气水平和实验设置有关的问题,解决解决方案并在线提交答案,同时最大程度地减少实验持续时间。这可以比传统的三轴光谱仪进行更准确的测量。Adrian Giuseppe del Maestro的论文讨论了超鼻子线中的超导体 - 金属量子相变,从而完整描述了由于库珀对破坏机制而导致的零温度相变。研究考虑了杂质的各种来源和对超导特性的影响,计算交叉相图并分析电导率校正和热导率校正。Kyrill Alekseevich Bugaev的另一篇论文探讨了核和HADRONIC系统中状态和相变的方程,讨论了核液体液体相过渡和解限相位过渡的准确解决的统计模型,并重点介绍了这些模型中常见的物理特征。超导性和超流量:统一复杂的现象已经对超导性的概念进行了广泛的研究,并试图解释其潜在的机制。最近的研究集中在大规范分区上,该分区直接从该框架中为有限量和阶段提供解决方案。这种方法还表明,有限体积系统会施加时间限制,从而影响这些系统内可能状态的形成和衰减率。这项研究的一个重要结果是使用丘陵和Dales模型计算物理簇中表面熵的上限和下限。此外,已经评估了第二个病毒系数,以说明HADRON之间的硬核排斥潜力的洛伦兹收缩,从而进一步巩固了我们对这些相互作用的理解。根据参考。此外,将大量的重夸克 - 格鲁恩袋纳入统计描述中,可以增强我们对这些复杂系统的理解。这些进步证明了统一理论框架在阐明错综复杂的现象(如超导性和超流量)中的力量。历史上超导科学的发展,人们普遍认为可以通过电子对的形成来解释超导性。但是,由于配对电子的零点振荡和缺乏颗粒间吸引力,因此配对电子无法自发形成超导冷凝物。为了解决这一限制,研究人员提出了模型,配对电子可以订购其零点波动,从而导致颗粒之间的吸引力。此排序过程可以创建统一的颗粒集合,从而产生超导性。一种可比的机制是HE-4和HE-3中超流体现象的基础,其物理原理在同时控制这两种现象。发现这些共享机制强调了理论框架在统一物理学中看似不同的概念中的重要性。关键字:超导性,超流量,零点振荡**第1部分:金属中的金属**,电子通过短距离的排斥潜力相互互动(筛选的库仑)。该系统等效于一个自由电子系统,这意味着,出于实际目的,我们可以将金属电子视为具有重新归一化参数的非相互作用的费米。该方程式解释了场的排斥。有限温度下的特定热容量与激发和行为的体积成正比4KFK,其中KF是费米波数。**第2部分:超导体中的电子相互作用**研究研究了常规和非常规超导体中的电子声子相互作用。该研究的重点是使用非弹性中子散射的经典超导体的声子光谱和铅。虽然著名的BCS理论(1957)解释了古典超导性的大多数方面,但仍有兴趣研究这些材料中的声子寿命。研究使用新的高分辨率中子光谱仪在μEV阶的能量分辨率的大量动量空间内测量声子线宽度。研究还讨论了声子的线宽度如何与电子偶联参数λ成比例。**第3部分:Meissner效应的经典偏差**最近的一项研究声称提供了对Meissner效应的经典解释,但是该论点滥用了Gennes对超导体中通量驱动的推导。该研究旨在纠正这一错误,并提供纯粹的Meissner效应的经典推导。Meissner在超导体中的效应解释了经典研究人员使用几个论点来讨论超导体中的Meissner效应,这将在这里很大程度上被忽略。相反,我们专注于基于De Gennes的经典教科书[2]的最关键论点。通过将该方程取代为动能的表达式,我们可以得出伦敦方程。但是,De Gennes从未得出这个结论。但是,De Gennes从未得出这个结论。1,超电流密度表示为j(r)= n(r)v(r),其中n是超导电子的密度,v是电子速度或漂移速度,如de Gennes所指出的那样。最小化动能和磁能总和后,获得了F.和H. Londons的方程:H +λ2∇×(∇×H)= 0,其中λ是穿透深度。essén和Fiolhais使用此结果来得出结论,超导体只是完美的导体。拓扑量子计算具有独特的属性,包括接近效应设备。拓扑绝缘子表面状态可以被认为是“一半”的普通2D电子气(2DEG)或四分之一的石墨烯,具有EF(交换场)自旋偏光Fermi表面。电荷电流与自旋密度有关,并且旋转电流与电荷密度有关。Berry的阶段适用于该系统,使其对疾病变得稳健。然而,它也表现出弱的抗静脉化,这使得无法定位外来状态。当系统的对称性破裂时,表面能隙会形成,从而导致异常的量子霍尔状态和拓扑磁电效应。在某些情况下,表面被张开而不会破坏对称性,从而揭示了更多的外来状态。这些状态需要内在的拓扑顺序,例如非亚伯分数量子霍尔效应(FQHE)。轨道量子厅效应涉及dirac费米的Landau水平,而“分数” IQHE的能量方程为2e_xy = 1/2hb。可以通过将磁性物质沉积在表面上来诱导异常QHE。这会在域壁上产生手性边缘状态,其中DM(域壁磁化)和-DM处于平衡状态。拓扑磁电效应是这种现象的结果,其“ Q项”描述了其行为。一项由Qi,Hughes和Zhang于2008年发表的研究证明了这种效应在具有磁损失表面的Ti的固体圆柱体中存在。在2009年的另一项研究中,艾森,摩尔和范德比尔特探索了超导性的微观理论,这对于理解这些现象至关重要。给定文章文本此处:1957年,Bardeen,Cooper和Schrieffer(BCS)开发了关于超导性的开创性理论。这项开创性的工作导致了1972年授予这些科学家的诺贝尔物理学奖。在1986年发现了高温超导性,在Laba-Cu-O中发现了一个显着的突破,温度高达30 kelvin。进一步的实验显示出其他材料,表现出大约130 kelvin的过渡温度,与先前限制约30 kelvin的大幅增加。良好的过渡温度在很大程度上取决于压力。虽然BCS理论为理解超导性提供了一个重要框架,但人们普遍认为其他效果也在起作用,尤其是在低温下解释这种现象时。在非常低的温度下,费米表面附近的电子变得不稳定并形成库珀对。库珀的作品证明,即使存在薄弱的有吸引力的潜力,这种结合也会发生。在常规超导体中,吸引力通常归因于电子晶格相互作用。但是,BCS理论只要求潜力具有吸引力,而不论其起源如何。BCS框架将超导性描述为库珀对凝结产生的宏观效应,Cooper Pairs(表现出表现出骨体性能)。这些玻色子可以在足够低的温度下形成大型的玻色网凝结物,从而导致超导性。在许多超导体中,配对所需的电子之间的有吸引力的相互作用是通过与声子(振动晶体晶格)的相互作用间接介导的。产生的图片如下:通过导体移动的电子吸引附近的晶格正电荷,导致另一个具有相反旋转的电子,以移入较高的正电荷密度区域。这种相关性导致形成高度集体的冷凝物。在此“凝结”状态下,一对的破裂会影响整个冷凝物的能量 - 而不仅仅是一个电子或一对。因此,打破任何一对所需的能量与打破所有对所需的能量(或两个以上的电子)有关。由于配对的增加,导体中振荡原子的踢脚在足够低的温度下不足以影响整个凝聚力或单个“成员对”,从而使电子能够保持配对并抵抗所有外部影响。因此,冷凝水的集体行为对于超导性至关重要。在许多低温超导体中都满足了这种情况。BCS理论首先假设可以克服库仑排斥的电子之间的吸引人相互作用。在大多数材料(低温超导体)中,这种吸引力通过电子晶体耦合间接带来。但是,BCS理论的结果不取决于有吸引力的相互作用的起源,其他效果也可能起作用。在超速费米斯气体中,磁场对其feshbach共振进行了细微调节,科学家已经观察到成对形成。这些发现与表现出S波状态的常规超导体不同,在许多非常规高温D波超导体中并非如此。尽管有一些描述这些情况的BCS理论的扩展,但它们不足以准确描述高温超导性的特征。BCS形式主义可以通过假设它们之间的有吸引力的相互作用,形成库珀对,从而近似金属中的电子状态。与正常状态下的单个电子行为相反,在吸引力下形成了绑定对。最初在该降低电势内提出的波函数的变异性ANSATZ后来被证明是在致密对方案中的精确性。对超速气体的研究引起了人们对稀释和致密费米对之间连续交叉的开放问题的关注。值得注意的是,同位素对临界温度的影响表明晶格相互作用在超导性中起着至关重要的作用。在某些超导体的临界温度接近临界温度附近的热容量的指数增加也意味着能量带隙。此外,随着系统接近其过渡点的结合能量,测得的能量差距降低了临界温度的暗示。这支持了以下想法,即在超导状态下形成的结合颗粒(特别是电子对),以及它们的晶格相互作用绘制了更广阔的配对电子图片。bcs理论做出独立于相互作用细节的预测,只要电子之间的吸引力很弱即可。通过许多实验证实了该理论,表明库珀对形式及其相关性来自保利排除原则。要打破一对,必须改变所有其他对的能量,从而为单粒子激发产生能量差距。此间隙随着有吸引力的相互作用的强度而生长,并且在过渡温度下消失。bcs理论还描述了在进入超导状态时状态的密度如何变化,其中消除了在费米水平的电子状态。在隧道实验和超导体的微波反射中直接观察到能量间隙。该理论预测了能量差距对温度和临界温度的依赖性,δ(t = 0)= 1.764 kbtc的通用值。在临界温度附近,关系接近δ(t→Tc)≈3.06kbtc√(1-(t/tc))。该理论还预测了Meissner效应和温度的渗透深度变化。BCS理论解释了超导性是如何以电子 - 音波耦合和Debye截止能量而发生的。它正确地描述了临界磁场随温度的变化,将其与费米水平的状态温度和状态密度有关。过渡温度(TC)与这些因素有关,TC与材料中使用的同位素的质量的平方根成反比。这种“同位素效应”首先是由1950年在汞同位素上独立工作的两组观察到的。BCS理论表明,超导性与晶格的振动有关,该晶格为库珀对中电子提供了结合能。Little-Parks实验和其他研究支持了这一想法,某些材料(例如二氨基镁)表现出BCS样行为。BCS理论所涉及的关键因素包括: *电子偶联(V)和Debye截止能量(ED) *在费米级别(N(N(N(0))) *的电子密度 * *同位素效应,其中TC与本质理论的平方关系质量相反,与BC的质量相关的质量相关的质量是基础的,而BC的质量是基本的,其bc的质量是基础的,其bc的质量是基本的。晶格振动和电子偶联。超导性的发展以20世纪中叶的几个关键里程碑和发现为标志。在1956年,物理学家白金汉发现超导体可以表现出很高的吸收。大约在同一时间,伊曼纽尔·麦克斯韦(Emanuel Maxwell)在汞的超导性中发现了“同位素效应”的证据,这导致了对这一现象的进一步研究。让我知道您是否要我添加或删除任何东西!在1950年,包括雷诺,塞林和赖特在内的一组研究人员报告说,汞同位素的超导性。这一发现之后是Little,Parks观察到1962年超导缸的过渡温度中的量子周期性。多年来,研究继续提高我们对超导性的理解,并从库珀,巴丁,施里弗和de gennes等物理学家做出了明显的贡献。Bardeen-Cooper-Schrieffer(BCS)理论的发展,该理论解释了电子如何形成对超导性的对,这是该领域的主要突破。最近的研究还集中在“小公园振荡”现象上,该现象与超导状态和绝缘状态之间的过渡有关。新理论和模型的发展继续提高我们对超导性的理解,并从施密特(Schmidt)和廷克汉姆(Tinkham)等研究人员做出了重要贡献。BCS理论已被广泛采用,仍然是现代物理学的重要组成部分,许多资源可用于学习这个复杂的主题。在线档案和教育材料,例如BCS理论的《体育学》页面和鲍勃·施里弗(Bob Schrieffer)的录音,可访问对该主题的关键信息和见解。注意:我删除了一些与释义文本无关的引用,仅保留了最重要的文本。
