波纹现象和曲率效应可提高稳定性并产生各向异性,以及增强的机械、光学和电子响应。双层石墨烯中的霍尔效应[1]和 MoS 2 中形成的人造原子晶体[2]就是很好的例子,它们表明电导率与偏离完美平坦结构之间存在很强的相关性。最近,铁电畴壁作为一种全新类型的二维系统出现,其形貌和电响应之间具有特别强的相关性。[3–6] 畴壁表现出 1-10 Å 数量级的有限厚度,因此通常被称为准二维系统。除了有限的厚度和与波纹二维材料类似之外,这些壁并不是严格意义上的二维,因为它们不会形成完全平坦的结构。弯曲和曲率自然发生,以尽量减少静电杂散场,确保机械兼容性,或由于导致畴壁粗糙的点缺陷。[7–10] 重要的是,相对于主体材料电极化的任何方向变化都会直接导致电荷状态的改变,从而导致局部载流子
铁凋亡是一种以氧化应激和铁依赖性方式调节细胞死亡的新兴形式,主要是由活性氧(ROS)过量产生引起的。操纵铁铁作用已被认为是抑制肝肿瘤生长的有前途的治疗方法。然而,肝癌抗铁毒性的抗性发展在癌症治疗中构成了重大挑战。翻译后修饰(PTMS)是关键的酶促催化反应,可以共价调节蛋白质构象,稳定性和细胞活性。此外,PTM在各种生物学过程中扮演关键作用,并在包括铁质吞噬作用的各种生物学过程中发挥作用。重要的是,与铁凋亡有关的关键PTM调节剂已被确定为癌症治疗的潜在靶标。近年来,已经对两种蛋白质SLC7A11,SLC7A11,GPX4的PTMS功能进行了广泛研究。本综述将总结PTM在肝细胞相关蛋白中在肝细胞癌(HCC)治疗中的作用。
透明细胞肾细胞癌 (ccRCC) 是肾细胞癌 (RCC) 的主要类型,常与冯·希佩尔·林道 (VHL) 基因的缺失或突变、糖脂代谢增强以及肿瘤微环境的异质性有关。RCC 细胞中的 VHL 改变导致缺氧诱导因子及其下游靶点血管内皮生长因子的激活,以及多种细胞死亡途径的重编程和代谢无力,包括铁死亡,这与靶向治疗或免疫治疗有关。生物代谢物 (如铁和脂质) 的变化支持铁死亡作为 RCC 的潜在治疗策略,而铁代谢和铁死亡调控已在许多研究中被作为抗 RCC 剂进行研究,并且各种铁死亡相关分子已被证明与 ccRCC 的转移和预后有关。例如,谷胱甘肽过氧化物酶4和谷氨酰胺酶抑制剂可以抑制嘧啶合成并增加VHL缺陷型RCC细胞中的活性氧水平。此外,经历铁死亡的肿瘤细胞释放的损伤相关分子模式也介导抗肿瘤免疫,免疫治疗可以通过铁死亡与靶向治疗或放疗产生协同作用。然而,诱导铁死亡不仅可以抑制癌症,而且由于其对抗癌免疫的潜在负面影响,还会促进癌症发展。因此,铁死亡和各种肿瘤微环境相关分子可能在RCC的发展和治疗过程中共同发生,进一步了解铁死亡的相互作用、核心靶点和相关药物可能为RCC治疗提供新的联合用药策略。本文我们总结了关于铁死亡和RCC的关键基因和化合物,以展望未来的治疗策略并为通过铁死亡克服RCC耐药性提供足够的信息。
摘要这是先前评论的更新(Naumis et al 2017rep。prog。物理。80 096501)。考虑了线石墨烯和其他金属,绝缘,铁电,铁弹性,铁磁和多效2D材料的实验和理论进步。We surveyed (i) methods to induce valley and sublattice polarisation ( P ) in graphene, (ii) time-dependent strain and its impact on graphene's electronic properties, (iii) the role of local and global strain on superconductivity and other highly correlated and/or topological phases of graphene, (iv) inducing polarisation P on hexagonal boron nitride monolayers via strain, (v)通过应变,(VI)铁核2D材料(带有固有弹性(σ),电气(P)和磁性(M)极化,修饰过渡金属二色元化元素单层单层单层的光电特性,以及初期的2D多效中部和(VII)MoiréBirayflator flato seperer,以及其他分期型均型均匀的型号,并表现表现出可以通过旋转和剪切应变调整的铁从订单的系统。该更新具有可调二维量子旋转霍尔在德国,元素2D铁电抗性和2D多效性NII 2的实验实现。该文件是为了讨论单层中发生的效果的讨论,然后进行了有关BiLayers和
Niobate(LN)由于其丰富的材料特性,包括二阶非线性光学,电光和压电性特性,因此一直处于学术研究和工业应用的最前沿。LN多功能性的另一个方面源于在LN中使用微型甚至纳米规模的精度来设计铁电域的能力,这为设计具有改进性能的设计声学和光学设备提供了额外的自由度,并且只有在其他材料中才有可能。在这篇评论论文中,我们提供了针对LN开发的域工程技术的概述,其原理以及它们提供的典型域大小和模式均匀性,这对于需要具有良好可重复性的高分辨率域模式的设备很重要。它还强调了每种技术对应用程序的好处,局限性和适应性,以及可能的改进和未来的进步前景。此外,审查提供了域可视化方法的简要概述,这对于获得域质量/形状至关重要,并探讨了拟议的域工程方法的适应性,用于新兴的薄膜尼型乳核酸杆菌在绝缘剂平台上的薄膜,从而创造了下一个构成稳定范围和范围的集成范围和范围范围的范围和范围范围的范围。
摘要:铁电范德华(VDW)异质结构的接口驱动效应为搜索替代设备体系结构提供了新的机会,以克服von Neumann瓶颈。但是,它们的实施仍处于起步阶段,主要是通过电气控制。在寻求新型神经形态体系结构时,制定其他光学和多态控制的策略是最大的兴趣。在这里,我们证明了铁电场效应晶体管(FEFET)的铁电偏振状态的电和光学控制。完全由Res 2/hbn/cuinp 2 S 6 VDW材料制成的FeFets达到的ON/OFF比率超过10 7,磁滞存储器窗口最大为7 V宽,多个寿命超过10 3 s。此外,Cuinp 2 S 6(CIPS)层的铁电偏振可以通过光激发VDW异质结构来控制。我们进行了波长依赖性研究,该研究允许在极化的光学控制中识别两种机制:带对波段光载体在2D半导体RES 2中生成2D半导体电压,并进入2D Ferroectric CIPS。最后,通过在三种不同的突触模式下操作FEFET来证明异突触可塑性:电刺激,光学刺激和光学辅助突触。模拟关键的突触功能,包括电气长期可塑性,光电可塑性,光学增强和峰值速率依赖性可塑性。模拟的人工神经网络表现出非常出色的精度水平,即接近理想模型突触的91%。这些结果为未来对光面性VDW系统的研究提供了新的背景,并将铁电VDW异质结构放在下一个神经形态计算体系结构的路线图上。关键字:神经形态计算,突触,光电子,铁电,二维材料■简介
淋巴瘤是全球第六种最常见的癌症类型。在当前治疗标准下,淋巴瘤患者通常无法对治疗或复发作出反应,需要进一步治疗。因此,需要探索新颖的治疗策略,我们应该扩展我们对淋巴瘤分子基础的理解。铁凋亡是一种非凋亡调节的细胞死亡,其特征是活性氧和由于代谢功能障碍而引起的脂质过氧化。过多或缺乏铁氧作用已与肿瘤发育有关。当前的临床前证据表明,铁铁病参与淋巴瘤的肿瘤发生,进展和耐药性,鉴定出潜在的生物标志物和有吸引力的分子靶标。我们的审查总结了铁凋亡的核心机制和调节网络,并讨论了淋巴瘤治疗的铁凋亡诱导的现有证据,目的是提供一个框架,以理解铁凋亡在淋巴细胞内的作用以及对淋巴瘤治疗的新观点。
摘要:脂质代谢失调是肝癌的共同特征,维持肿瘤细胞生长和存活必不可少。我们旨在利用这一弱点,通过靶向关键代谢因子前蛋白转化酶枯草溶菌素/kexin 9 型 (PCSK9) 来重新连接致癌代谢中心。我们使用三种肝癌细胞系 Huh6、Huh7 和 HepG2 评估了 PCSK9 抑制的效果,并使用斑马鱼体内模型验证了结果。PCSK9 缺乏导致所有细胞系的细胞增殖受到强烈抑制。在脂质代谢水平上,PCSK9 抑制导致细胞内中性脂质、磷脂和多不饱和脂肪酸增加以及脂质氢过氧化物积累增加。分子信号分析涉及 sequestome 1/Kelch 样 ECH 相关蛋白 1/核因子红细胞 2 相关因子 2 (p62/Keap1/Nrf2) 抗氧化轴的破坏,导致铁死亡,其形态特征通过电子和共聚焦显微镜得到确认。使用斑马鱼异种移植实验验证了 PCSK9 缺乏的抗肿瘤作用。抑制 PCSK9 可有效破坏肿瘤代谢过程,诱导代谢衰竭并增强癌细胞对铁触发脂质过氧化的脆弱性。我们提供了强有力的证据支持抗 PCSK9 方法的药物重新定位以治疗肝癌。
尽管对铁电体的尺寸效应进行了广泛的研究,但是反铁电体的结构和特性在尺寸减小的情况下如何演变仍然难以捉摸。鉴于反铁电体在高能量密度存储应用方面具有巨大潜力,了解它们的尺寸效应将为优化小尺度器件性能提供关键信息。本文研究了无铅 NaNbO 3 膜中反铁电性的基本本征尺寸依赖性。通过广泛的实验和理论方法,探究了膜厚度减小后有趣的反铁电到铁电的转变。这种尺寸效应导致 40 nm 以下的铁电单相,以及在此临界厚度以上铁电和反铁电序共存的混合相状态。此外,结果表明反铁电和铁电序是电可切换的。第一性原理计算进一步表明,观察到的转变是由膜表面引起的结构扭曲驱动的。这项工作为反铁电体中内在尺寸驱动的缩放提供了直接的实验证据,并展示了利用尺寸效应通过膜平台驱动环境无铅氧化物中的突发特性的巨大潜力。