Al 中的自旋寿命。(c)由不同自旋轨道耦合强度参数(b 分别为 0.1、0.02 和 0.005)的隧道磁阻 (TMR) 比推导的自旋寿命的温度依赖性。(d)超连续磁共振涡旋介导的自旋电流示意图。上平面:自旋角动量和超连续磁共振涡旋涡度之间的嬗变。下图:磁性绝缘体 (MI)/SC/MI 结构中通过超连续磁共振涡旋液体进行自旋传输的理论预测。(e)用于探测磁振子和涡旋之间耦合的 Nb/Py 异质结构的器件结构。金电极用作天线来激发和检测 Py 中的磁振子自旋波。(f)归一化的磁振子自旋波传输图与平面外磁场和自旋波频率的关系。两个带隙特征与第一和第二布拉格散射条件吻合得很好。 (bc) 改编自参考文献 [8],经许可,版权归 Springer Nature 2010 所有。(d) 改编自参考文献 [9],经许可,版权归 APS 2018 所有。(ef) 改编自参考文献 [41],经许可,版权归 Springer Nature 2019 所有。
基于人工突触的受脑启发的神经形态计算硬件为执行计算任务提供了有效的解决方案。然而,已报道的人工突触中突触权重更新的非线性和不对称性阻碍了神经网络实现高精度。在此,这项工作开发了一种基于 α -In 2 Se 3 二维 (2D) 铁电半导体 (FES) 中的极化切换的突触记忆晶体管,用于神经形态计算。α -In 2 Se 3 记忆晶体管利用记忆晶体管配置和 FES 通道中电配置极化状态的优势,表现出出色的突触特性,包括近乎理想的线性度和对称性以及大量可编程电导状态。因此,α -In 2 Se 3 记忆晶体管型突触在模拟人工神经网络中的数字模式识别任务中达到了 97.76% 的高精度。这项工作为在先进的神经形态电子学中使用多端 FES 记忆晶体管开辟了新的机遇。
摘要:HfO 2 中铁电性的发现引起了人们对其在存储器和逻辑中的应用的极大兴趣,因为它具有 CMOS 兼容性和可扩展性。使用铁电 HfO 2 的器件正在被研究;例如,铁电场效应晶体管 (FEFET) 是下一代存储器技术的主要候选者之一,因为它具有面积小、能效高和运行速度快等优点。在 FEFET 中,铁电层沉积在 Si 上,界面处不可避免地会形成厚度约为 1 nm 的 SiO 2 层。该界面层 (IL) 增加了切换极化和写入存储器所需的栅极电压,从而增加了操作 FEFET 所需的能量,并使该技术与逻辑电路不兼容。本研究结果表明,铁电 Hf 0.5 Zr 0.5 O 2 基金属氧化物半导体 (MOS) 结构中的 Pt/Ti/薄 TiN 栅极电极可以远程清除 IL 中的氧气,将其减薄至约 0.5 纳米。IL 的减少显著降低了铁电极化切换电压,同时剩余极化强度增加约 2 倍,极化切换突变度增加约 3 倍,这与密度泛函理论 (DFT) 计算结果一致,该计算模拟了 IL 层在栅极堆栈静电中的作用。剩余极化强度和极化切换突变度的大幅增加与清除过程中的氧扩散相一致,氧扩散减少了 HZO 层中的氧空位,从而使部分 HZO 晶粒的极化脱钉扎。关键词:铁电性、远程清除、夹层、EOT 减少、极化■ 介绍
摘要:HfO 2 中铁电性的发现引起了人们对其在存储器和逻辑中的应用的极大兴趣,因为它具有 CMOS 兼容性和可扩展性。使用铁电 HfO 2 的器件正在被研究;例如,铁电场效应晶体管 (FEFET) 是下一代存储器技术的主要候选者之一,因为它具有面积小、能效高和运行速度快等优点。在 FEFET 中,铁电层沉积在 Si 上,界面处不可避免地会形成厚度约为 1 nm 的 SiO 2 层。该界面层 (IL) 增加了切换极化和写入存储器所需的栅极电压,从而增加了操作 FEFET 所需的能量,并使该技术与逻辑电路不兼容。本研究结果表明,铁电 Hf 0.5 Zr 0.5 O 2 基金属氧化物半导体 (MOS) 结构中的 Pt/Ti/薄 TiN 栅极电极可以远程清除 IL 中的氧气,将其减薄至约 0.5 纳米。IL 的减少显著降低了铁电极化切换电压,同时剩余极化强度增加约 2 倍,极化切换突变度增加约 3 倍,这与密度泛函理论 (DFT) 计算结果一致,该计算模拟了 IL 层在栅极堆栈静电中的作用。剩余极化强度和极化切换突变度的大幅增加与清除过程中的氧扩散相一致,氧扩散减少了 HZO 层中的氧空位,从而使部分 HZO 晶粒的极化脱钉扎。关键词:铁电性、远程清除、夹层、EOT 减少、极化■ 介绍
近年来,晶体管的尺度不断逼近物理极限,阻碍了计算能力的进一步发展。后摩尔时代,新兴的逻辑和存储器件成为扩展智能计算能力的基础硬件。本文综述了用于智能计算的铁电器件的最新进展。首先阐明了铁电器件的材料性质和电学特性,然后讨论了可用于智能计算的新型铁电材料和器件。全面回顾和比较了用于低功耗逻辑、高性能存储器和神经形态应用的铁电电容器、晶体管和隧道结器件。此外,为了为开发基于高性能铁电的智能计算系统提供有用的指导,本文讨论了实现超大规模铁电器件以实现高效计算的关键挑战。
胃癌仍然是全球癌症死亡率的主要因素之一,尽管诊所中没有有希望的靶标药物。因此,紧急鉴定出新的针对胃癌的靶向药物。是诱导胃癌治疗的铁铁作用的有前途的策略,该诱导剂是一种潜在的药物。尽管如此,尚未进入诊所。因此,我们的目的是使用药物重新利用策略来鉴定一种用于胃癌治疗的新型铁铁作用诱导剂。首先,使用商业化复合文库的药物重新利用策略,小分子生物活性catsper通道阻滞剂HC-056456的特征是抑制胃癌生长MGC-803的生长。同时,这种抗增殖作用可以被铁蛋白1(一种抑制剂铁蛋白-1)阻止,表明HC-056456是一种诱导HC-056456。然后,鉴定出HC-056456通过p53/slc7a11信号通路降低GSH含量。然后,当细胞暴露于HC-056456时,累积了Fe 2+和脂质过氧化物。最后,发现HC-056456通过增加p53并在体内抑制SLC7A11,但在Ferrostatin-1的存在下抑制了SLC7A11,从而抑制了胃癌细胞的生长。总的来说,我们系统地阐明了HC-056456通过在体外和体内引起的铁毒性作用,从而发挥抗震颤癌症的作用,这表明其在胃癌治疗中的潜在作用。
铁死亡是一种新型的细胞死亡方式,以铁依赖性的脂质过氧化为特征,涉及铁代谢、脂质代谢和氧化应激等多种生物学过程。越来越多的研究表明铁死亡与癌症和神经退行性疾病有关,如胶质母细胞瘤、阿尔茨海默病、帕金森病和中风等。基于这些发现,我们可以选择性地诱导铁死亡来治疗某些癌症,或者通过抑制铁死亡来治疗神经退行性疾病。本文综述了铁死亡的相关进展、铁死亡的调控机制、铁死亡在脑肿瘤和神经退行性疾病中的参与以及相应的药物疗法,旨在为其治疗提供新的潜在靶点。
©2020-22 Western Digital Corporation 或其附属公司。保留所有权利。Western Digital、Western Digital 徽标、ArcticFlow、IsoVibe 和 Ultrastar 是 Western Digital Corporation 或其附属公司在美国和/或其他国家/地区的注册商标或商标。Ceph 是 Red Hat, Inc. 或其子公司在美国和其他国家/地区的商标或注册商标。OpenStack ® 文字商标和 OpenStack 徽标是 OpenStack Foundation 在美国和其他国家/地区的注册商标/服务标记或商标/服务标记,并经 OpenStack Foundation 许可使用。所有其他商标均为其各自所有者的财产。
− − 是一个基于 Landau-Ginzburg-Devonshire (LGD) 理论计算铁电单晶和薄膜热力学单畴平衡态及其特性的程序。利用 SymPy 库的符号操作,可以求解控制方程以及适当的边界条件,从而快速最小化晶体的自由能。利用流行的差分进化算法,通过适当的混合,可以轻松生成多个相图,例如块体单晶的压力-温度相图和单畴薄膜系统的常见应变-温度相图。此外,可以同时计算稳定铁电相的多种材料特性,包括介电、压电和电热特性。对薄膜和单晶系统进行了验证研究,以测试开源程序的有效性和能力。
理解强自旋轨道耦合的窄带半导体中自旋极化载流子弛豫的基本散射过程,对于自旋电子学的未来应用至关重要。[1–8] 一个核心挑战是利用自旋轨道相互作用,在没有外部磁场的情况下实现高效的信息处理和存储。[6–12] 当表面或界面发生反转不对称时,或当自旋轨道相互作用存在于块体中时,可引起较大的拉什巴效应。[13–17] 结果,电子态的自旋简并度被提升,其自旋分裂变为 Δ E = 2 α R | k |,它一级线性依赖于动量| k |和拉什巴效应的强度,用所谓的拉什巴参数 α R 表示。 [18,19] 较大的 Rashba 效应被认为是实现增强自旋极化电流控制、[20,21] 高效自旋注入 [10,22] 和自旋电荷相互转换、[23–26] 较大自旋轨道扭矩、[5,27] 的关键。
