由残留的恶性细胞和癌症干细胞引起的肿瘤。 [2]此外,由于手术清除肿瘤,可能会丢失大量健康组织。 癌症治疗的成功可以通过消除恶性细胞的能力,同时最大程度地减少对健康组织的损害和维持功能的能力来衡量。 此外,健康组织的再生取决于处理后干细胞的存活。 因此,需要互补的临床策略来消除恶性细胞的抵抗力,同时使患者福祉和生活质量成为可能。 高温(HT)是一种通过热量诱导癌细胞死亡的方法,它使用非电离辐射或对流方法在人体靶向区域中升高温度(至≈40–45°C),而磁性超细热(MHT)则使用局部纤维素颗粒型磁性磁性磁性磁性磁性磁性的磁性高温(MHT)。 [7–9] MHT已与放疗和化学疗法相结合,作为药物递送的策略。 [10] MHT的主要好处涉及其治疗特定癌症的能力,同时避免了危险的全身效应。 [11]此外,MHT在最低侵入性(即,在肿瘤内或通过静脉内递送),与放射疗法或化学疗法相比,具有轻度的副作用[10],并且显示出具有许多癌症治疗的协同作用,例如,癌症治疗,例如,甲基疗法,[12]药物治疗,[12]药物治疗[14] [13] [13] [13] [13]。 [15]。[2]此外,由于手术清除肿瘤,可能会丢失大量健康组织。癌症治疗的成功可以通过消除恶性细胞的能力,同时最大程度地减少对健康组织的损害和维持功能的能力来衡量。此外,健康组织的再生取决于处理后干细胞的存活。因此,需要互补的临床策略来消除恶性细胞的抵抗力,同时使患者福祉和生活质量成为可能。高温(HT)是一种通过热量诱导癌细胞死亡的方法,它使用非电离辐射或对流方法在人体靶向区域中升高温度(至≈40–45°C),而磁性超细热(MHT)则使用局部纤维素颗粒型磁性磁性磁性磁性磁性磁性的磁性高温(MHT)。[7–9] MHT已与放疗和化学疗法相结合,作为药物递送的策略。[10] MHT的主要好处涉及其治疗特定癌症的能力,同时避免了危险的全身效应。[11]此外,MHT在最低侵入性(即,在肿瘤内或通过静脉内递送),与放射疗法或化学疗法相比,具有轻度的副作用[10],并且显示出具有许多癌症治疗的协同作用,例如,癌症治疗,例如,甲基疗法,[12]药物治疗,[12]药物治疗[14] [13] [13] [13] [13]。[15]
先前的实验提供了分别在二维材料中滑动铁电性和光激发层间剪切位移的证据。在这里,我们发现通过激光照明,在H -BN双层中令人惊讶的0.5 ps中可以实现垂直铁电的完全逆转。综合分析表明,铁电偏振转换源自激光诱导的层间滑动,这是由多个声子的选择性激发触发的。从上层n原子的P z轨道到下层B原子的P z轨道的层间电子激发产生所需的方向性层间力,激活了平面内光学TOTO TOTO TOS TOTO to-1和LO-1声音声模式。由TO-1和LO-1模式的耦合驱动的原子运动与铁电软模式相干,从而调节了动态势能表面并导致超快铁电偏振反转。我们的工作为滑动铁电的超快偏振转换提供了一种新颖的微观见解。
2D铁电材料分别与磁性/valleytronics,力学和光学的耦合,在信息存储,传感器技术和光电子化中呈现了有希望的应用。2D铁电与磁性的整合通过启用电场控制的磁状态来增强存储设备中的数据存储密度。铁电 - 瓦利耦合通过利用山谷极化的电控制,对高速,低能电子电子设备有望。铁电 - 应变耦合会导致各种极性拓扑,并在高密度数据存储技术和传感器设备中使用潜在的应用。此外,铁电和光学之间的耦合促进了基于铁电材料的非线性光子学的发展。本综述总结了耦合机制中最新的理论进步,包括dzyaloshinskii-moriya-interaction诱导的磁电耦合,与对称性相关的铁电 - 触发器耦合,通过互动式极高的拓扑结构,以及第二个型号,通过互动式互动。提供了为多功能应用的2D铁电材料中耦合的当前挑战和未来的机会。
作为非易失性记忆设备的有前途的候选人,基于Hafnia的铁电系统最近一直是一个热门研究主题。尽管在过去十年中取得了显着进步,但耐力问题仍然是其最终应用的障碍。在基于钙钛矿的铁电磁体中,例如研究良好的PB [Zr X Ti 1-X] O 3(PZT)家族,在电荷缺陷(例如氧气空位)与移动域的相互作用的框架内讨论了极化疲劳,尤其是在电极界面上,尤其是在转换过程中。武装在这种背景下,设定了一个假设,以检验类似的机制可以与基于Hafnia的铁电机一起发挥作用。导电钙钛矿LA-SR-MN-O用作建立LA 0.67 SR 0.33 MNO 3 / HF 0.5 Zr 0.5 O 2(HZO) / LA 0.67 SR 0.67 SR 0.67 SR 0.33 MNO 3 MNO 3式结构的接触电极。纳米级X射线差异在单个电容器上进行,并在双极切换过程中证明了从极性O期向非极性M期的结构相变。已在不同的氧空位浓度下计算了多相HZO的能量格局。基于理论和实验结果,发现在电循环过程中由氧空位再分配引起的极性到非极相变,这可能是HZO疲劳的一种解释。
关于贾坎德邦中央大学,兰奇尼中央大学(CUJ)是根据2009年《中央大学法》建立的,其明确的愿景是先驱当代教育计划,并提高了最先进技术的研究。提供各种计划,包括5年综合(UG/PG),研究生和博士学位。各个学校和部门的课程,Cuj仍然处于教育创新的最前沿。Cuj的教职员工在课程中拥有灵活性并促进了强大的研究合作,获得了国家和国际认可,获得了享有声望的奖学金,项目资金和荣誉。他们通过教学和咨询公司积极为政府,公共和私营部门做出贡献,并丰富了学术界和工业。cuj对卓越的承诺反映了印度政府MHRD NIRF的印度前300家学院的一致排名。在2020年,泰晤士报高等教育在全球前1000个机构中承认了Cuj,强调了其国际地位和学术实力。位于兰奇(Ranchi)蓬勃发展的Smart City中,Cuj的New Campus在坎克(Kanke)的Cheri-Manatu占地510英亩,提供了一种有利于学习和研究的环境。最初的校园坐落在兰奇(Ranchi)郊区Brambe的CTI校园的宁静45英亩的景观中,无缝地将教室和旅馆与自然环境整合在一起。有关Cuj,Ranchi的更多信息,包括录取和学术课程,请访问其网站http://cuj.ac.in/。
用于:汽车温度控制座椅(CCS),HUD,ADA,光学通信,LD温度控制,冷却器,PCR,小型冰箱,颈部冷却器,脸部摩托车,热电发电,空调,空调,烘干机
Moyu Chen 1 † , Yongqin Xie 1 † , Bin Cheng 2* , Zaizheng Yang 1 , Xin-Zhi Li 3 , Fanqiang Chen 1 ,
摘要:初期的铁电特性已经成为一种有吸引力的功能材料,因为它们的潜力是为外来的铁电行为而设计的,因此具有巨大的希望,可以扩大铁电家族。然而,到目前为止,他们的人工设计的铁电性远远远远没有与经典的铁电抗衡。在这项研究中,我们通过制定超细纳米域工程策略来应对这一挑战。通过将这种方法应用于基于SRTIO 3的膜的代表性初期铁电膜,我们实现了前所未有的强大铁电性,不仅超过了先前的初期铁电磁记录,而且还可以与经典的铁电极相媲美。,薄膜的不分极化可达到17.0μccm-2,超高的居里温度为973 K.原子尺度研究阐明了这种强大的高密度超细性纳米域在跨越3-10个单位细胞中这种强大的高密度超细性纳米域中这种强大的铁电性的起源。将实验结果与理论评估相结合,我们揭示了潜在的机制,在这种机制中,有意稀释的外国FE元素可以很好地产生更深的Landau能量,并促进了极化的短期排序。我们开发的策略显着简化了非常规铁电的设计,为探索新的和上级铁电材料提供了多功能途径。
铁死亡是一种新兴的程序性细胞死亡,由铁依赖性和过量的ROS介导的脂质过氧化启动,最终导致质膜破裂和细胞死亡。许多典型的信号通路和生物过程都参与了铁死亡。此外,癌细胞由于高ROS负荷和独特的代谢特点(包括铁的需求),更容易发生铁死亡。最近的研究表明,铁死亡在肿瘤,特别是肝细胞癌的进展中起着至关重要的作用。具体而言,诱导铁死亡不仅可以抑制肝癌细胞的生长,从而逆转肿瘤发生,还可以提高免疫治疗的效果,增强抗肿瘤免疫反应。因此,引发铁死亡已成为一种新的癌症治疗策略。在本文中,我们根据铁死亡的潜在机制和在肝细胞癌中的作用总结了铁死亡的特点,并提供了可能的治疗应用。
丙酸丙酸酯(CP)最初由美国食品药品监督管理局(FDA)批准,用于治疗由于其抗炎症特性而导致的湿疹和牛皮癣等皮肤状况,已成为在Keap-1中以突变为特征的肺癌中的肺癌症的有前途的候选者,在Keap-1中,负责为n ragencultator n n nrf-2 [2] [2] [2] [2]。NRF-2的上调与肺癌患者的预后不良有关,影响了大约三分之一的非小细胞肺癌(NSCLC)。此外,暴露于辐射还激活了NRF-2导致放射线[3,4]。针对NRF-2的小分子抑制剂在使癌细胞对化学疗法的敏感性方面表现出了希望,这表明它们作为放射疗法的佐剂潜力[5]。因此,在当前研究中,CP与辐射相结合,以评估其对Keap-1突变体肺癌细胞敏感的潜力。用CP抑制NRF-2并暴露于辐射促进的铁凋亡诱导,从而增强了NSCLC细胞的放射敏性[6]。铁凋亡,一种由铁内脂质过氧化物诱发的非凋亡细胞死亡的铁依赖性形式,是