摘要:本文研究了Ba离子改性的典型氧化物单轴铁电单晶Pb5Ge3O11的一些铁电性质,包括介电常数、DSC、铁电极化和电热效应(ECE)测量。测量结果表明,增加Ba掺杂会显著影响所有测量参数,主要是通过降低居里温度、逐渐扩散相变、降低极化值以及矫顽场来影响。整体ECE的下降受到极化降低的影响。与纯PGO单晶相比,这一降幅从1.2K降至0.2K。然而,扩散相变的影响增加了其发生范围(高达30K),这可能对应用有益。
过渡金属二硫属化物 [1] (TMDC) 是一类具有 C-TM-C 堆积结构的新兴材料,其中 C 和 TM 分别表示硫属原子(例如 Se 或 S)和过渡金属原子(例如 Nb、W 或 Mo)。在过去十年中,TMDC 单层由于其独特的电子和光学特性而引起了广泛关注 [2–12]。此类准二维材料的六方晶体结构意味着其电子能带结构中存在不等价的 K 谷,从而产生了谷自由度和基于谷的电子功能(谷电子学)。[13] TM 原子提供大的自旋轨道耦合 (SOC),[14] 从而导致其他独特特性,例如自旋谷锁定、[15]
谐振隧穿是一种量子力学效应,其中电子传输由量子孔(QW)结构内的离散能级控制。一种铁电谐振隧道二极管(RTD)利用QW屏障的开关电动极化状态来调节设备电阻。在这里,据报道,在All-Perovskite-氧化物BATIO 3 /SRRRUO 3 /BATIO 3 QW结构中发现了鲁棒的室温铁电调节谐振隧穿和负差分抗性(NDR)行为。通过BATIO 3铁电的可切换极性可调节谐振电流振幅和电压,其NDR比调制了≈3个数量级和一个OFF/ON电阻率超过2×10 4的OFF/ON电阻比。观察到的NDR效应被解释了由电子 - 电子相关性驱动的Ru-T 2g和Ru-E G轨道之间的能量带隙,如下性功能理论计算所示。这项研究为未来氧化物电子产品中的基于铁电的量子驾驶装置铺平了道路。
强度有助于确定与相动力学(n、k 和活化能 E a )和伴随生长相关的各种参数。钙钛矿的有效活化能
铁电体中的非均匀极化纹理为丰富的新材料物理学提供了沃土。非均匀极化分布的含义之一是在极化不连续处或一般在极化矢量场发散非零的点处出现束缚电荷。束缚电荷会感应出能量耗费很大的电场。因此,无论极化分布多么复杂,系统都倾向于保持其内部的电中性。那么中性意味着要么极化矢量场应该无发散,要么束缚电荷应该受到半导体性质的自由载流子的屏蔽。非均匀且几乎无发散的极化纹理主要见于多轴铁电体 [1,2],其中自发极化矢量可以旋转。
过渡金属二硫属化物 [1] (TMDC) 是一类具有 C-TM-C 堆积结构的新兴材料,其中 C 和 TM 分别表示硫属原子(例如 Se 或 S)和过渡金属原子(例如 Nb、W 或 Mo)。在过去十年中,TMDC 单层由于其独特的电子和光学特性而引起了广泛关注 [2–12]。此类准二维材料的六方晶体结构意味着其电子能带结构中存在不等价的 K 谷,从而产生了谷自由度和基于谷的电子功能(谷电子学)。[13] TM 原子提供大的自旋轨道耦合 (SOC),[14] 从而导致其他独特特性,例如自旋谷锁定、[15]
过渡金属二硫属化物 [1] (TMDC) 是一类具有 C-TM-C 堆积结构的新兴材料,其中 C 和 TM 分别表示硫属原子(例如 Se 或 S)和过渡金属原子(例如 Nb、W 或 Mo)。在过去十年中,TMDC 单层由于其独特的电子和光学特性而引起了广泛关注 [2–12]。此类准二维材料的六方晶体结构意味着其电子能带结构中存在不等价的 K 谷,从而产生了谷自由度和基于谷的电子功能(谷电子学)。[13] TM 原子提供大的自旋轨道耦合 (SOC),[14] 从而导致其他独特特性,例如自旋谷锁定、[15]
过渡金属二硫属化物 [1] (TMDC) 是一类具有 C-TM-C 堆积结构的新兴材料,其中 C 和 TM 分别表示硫属原子(例如 Se 或 S)和过渡金属原子(例如 Nb、W 或 Mo)。在过去十年中,TMDC 单层由于其独特的电子和光学特性而引起了广泛关注 [2–12]。此类准二维材料的六方晶体结构意味着其电子能带结构中存在不等价的 K 谷,从而产生了谷自由度和基于谷的电子功能(谷电子学)。[13] TM 原子提供大的自旋轨道耦合 (SOC),[14] 从而导致其他独特特性,例如自旋谷锁定、[15]
为了理解自旋流的基本限制并优化自旋注入过程,了解飞秒自旋注入的效率及其背后的微观机制是必不可少的。通过光诱导自旋流来操控磁化已经被证实,即超快退磁[3,6,7,9]以及小角度进动的激发,即GHz和THz自旋波。[12–14]尤其是,通过亚皮秒激光驱动的自旋流可以诱导自旋转移矩(STT),[14]而在重金属-铁磁体界面已经证明了通过圆偏振泵浦脉冲产生的光学自旋矩。[15,16]我们旨在通过结合时间分辨实验和从头算理论来产生微观见解,从而展示确定和提高自旋注入效率的方法,使未来的超快自旋电子学应用成为可能。至关重要的是,非平衡自旋注入集中在低于 100 fs 的脉冲中,从而产生具有高峰值强度的瞬态自旋电流。由于非平衡自旋注入是由光激发引起的,并且由自旋相关的电荷电流组成,因此不仅涉及费米能级附近的状态,还涉及其周围几个 eV 宽的能量区域中的状态,这些能量区域由泵浦激光脉冲的光子能量给出。这将非平衡自旋注入与在平衡条件下电驱动的磁振子自旋电流区分开来。[17–19]
铁死亡是一种不同于自噬、凋亡和坏死的新型受调控的细胞死亡方式,主要由铁依赖性的脂质过氧化所引起。研究表明,铁死亡过程涉及许多常规信号通路和生物学过程。近年来,研究表明铁死亡在包括卵巢癌在内的恶性肿瘤发生、发展和转移中起重要作用,并与化疗、放疗、免疫治疗等联合应用,能抑制卵巢癌细胞的生长,提示铁死亡在卵巢癌治疗中具有重要意义,可能成为新的治疗靶点。本文就铁死亡的特点、其发生机制、在卵巢癌中的作用及其在卵巢癌治疗中的潜在应用进行综述。
