我们必须保护固有的脆弱量子数据以释放量子技术的潜力。量子存储方案的相关问题是它们近期实施的潜力。由于海森贝格铁磁体很容易获得,因此我们研究了它们的稳健量子存储潜力。我们建议使用置换不变的量子代码将量子数据存储在Heisenberg Ferromagnets中,因为任何Heisenberg Ferromagnet的地面空间都必须在任何基本Qubits的置换库下对称。通过利用Pauli错误的预期能量的区域法,我们表明,增加海森堡铁磁体的有效维度可以改善存储寿命。当海森堡铁磁体的有效维度最大时,我们还获得了一个上限,以解决存储误差。此结果依赖于扰动理论,在该理论中,我们使用戴维斯(Davis)的差异差异表示以及这些分裂差异的递归结构。我们的数值界限使我们能够更好地了解海森堡铁磁体如何在Heisenberg Ferromagnets中增强量子记忆的寿命。
1明尼阿波利斯大学,明尼苏达州明尼苏达州55455,美国2约翰内斯塔省大学25128 Mainz,德国55128 3 Helmholtz-institute,GSI Helmholtzentrum fur Schwerionenforschung intericiaia for Intriciai, ,加利福尼亚州伯克利,94720-7300,美国5加利福尼亚州立大学 - 加利福尼亚州海沃德市东湾94542东湾,美国6,波士顿大学,马萨诸塞州波士顿大学02215,美国波士顿大学02215,美国7 7号电气和计算机工程系马萨诸塞州02215,美国9号物理与天文学学院,南安普敦大学,南安普敦SO117 1BJ,英国10 istituto di fotonica e nanotecnologiei ifn - CNR,CNR,CNR,38123 POVO,38123 POVO,TRENTO,TRENTO,TRENTO,ITALY 11 FONDALYE BRUNOO KESSLO(ITAZIONE BROUNO)123 3812222381238128812881288112388112881128811 pEROSE&3812888812。 A*Star量子创新中心(Q.INC),材料研究与工程研究所(IMRE),
过渡金属二硫属化物 [1] (TMDC) 是一类具有 C-TM-C 堆积结构的新兴材料,其中 C 和 TM 分别表示硫属原子(例如 Se 或 S)和过渡金属原子(例如 Nb、W 或 Mo)。在过去十年中,TMDC 单层由于其独特的电子和光学特性而引起了广泛关注 [2–12]。此类准二维材料的六方晶体结构意味着其电子能带结构中存在不等价的 K 谷,从而产生了谷自由度和基于谷的电子功能(谷电子学)。[13] TM 原子提供大的自旋轨道耦合 (SOC),[14] 从而导致其他独特特性,例如自旋谷锁定、[15]
过渡金属二硫属化物 [1] (TMDC) 是一类具有 C-TM-C 堆积结构的新兴材料,其中 C 和 TM 分别表示硫属原子(例如 Se 或 S)和过渡金属原子(例如 Nb、W 或 Mo)。在过去十年中,TMDC 单层由于其独特的电子和光学特性而引起了广泛关注 [2–12]。此类准二维材料的六方晶体结构意味着其电子能带结构中存在不等价的 K 谷,从而产生了谷自由度和基于谷的电子功能(谷电子学)。[13] TM 原子提供大的自旋轨道耦合 (SOC),[14] 从而导致其他独特特性,例如自旋谷锁定、[15]
过渡金属二硫属化物 [1] (TMDC) 是一类具有 C-TM-C 堆积结构的新兴材料,其中 C 和 TM 分别表示硫属原子(例如 Se 或 S)和过渡金属原子(例如 Nb、W 或 Mo)。在过去十年中,TMDC 单层由于其独特的电子和光学特性而引起了广泛关注 [2–12]。此类准二维材料的六方晶体结构意味着其电子能带结构中存在不等价的 K 谷,从而产生了谷自由度和基于谷的电子功能(谷电子学)。[13] TM 原子提供大的自旋轨道耦合 (SOC),[14] 从而导致其他独特特性,例如自旋谷锁定、[15]
过渡金属二硫属化物 [1] (TMDC) 是一类具有 C-TM-C 堆积结构的新兴材料,其中 C 和 TM 分别表示硫属原子(例如 Se 或 S)和过渡金属原子(例如 Nb、W 或 Mo)。在过去十年中,TMDC 单层由于其独特的电子和光学特性而引起了广泛关注 [2–12]。此类准二维材料的六方晶体结构意味着其电子能带结构中存在不等价的 K 谷,从而产生了谷自由度和基于谷的电子功能(谷电子学)。[13] TM 原子提供大的自旋轨道耦合 (SOC),[14] 从而导致其他独特特性,例如自旋谷锁定、[15]
altermagnetism是最近发现的一种新型的共线磁铁,它与铁磁体共享某些特征(在Brillouin Zone的一般点上缺乏非同性化的Kramers退化性,有限的综合大厅的效果,有限的磁磁效应),另一种与Antiferromagagnets(net Magnetiza-tione symention sonefore效应)[1]。虽然已经探索了altermagnets的许多特性,这在很大程度上是从旋转的角度,超导二极管和altermagnetism之间的相互作用的角度,这是另一个方面,其中铁磁体和抗fiferromagnets主要不同的是,到目前为止尚未解决。毫不奇怪,Altermagnets可以在一种情况下表现出典型的铁磁体的属性,而在另一种情况下,抗fiferromagnets典型的属性。There are two issues that are typically considered in terms of interaction between magnetism and supercon- ductivity: (1) what kind of superconducting state may be consistent with a given magnetic order and (2) what kind of pairing can be generated by proximity to a mag- netic order (in other words, if we can gradually suppress the long range magnetic order by an external stimulus, such as pressure, what supperconducting symmetry may emerge on the量子的两侧?)。
在这篇综述中,我们讨论了有关机器学习算法开发的最新结果,用于表征磁性的磁性磁纹理,这些磁性质地源自Dzyaloshinskii - Moriya - Moriya相互作用,该相互作用竞争了Heisenberg在Ferromagnets中的Heisenberg同型交换。我们表明,对于经典的自旋系统,有一系列的机器方法,可以根据几个磁化快照的基础,允许其准确的相位进行分类和定量描述。反过来,对量子天空的研究是一个较少探索的问题,因为对使用经典超级计算机进行此类波浪函数的模拟存在基本局限性。一个人需要找到模仿近期量子计算机上量子天空的方法。在这方面,我们讨论了基于从投影测量值获得的斑点数量有限的量子天空状态来估算经典对象的结构复杂性的实现。
视频:磁性是巨大的基本和技术重要性领域。在原子水平上,磁性起源于电子“自旋”。纳米融合(或基于纳米级的自旋电子学)的领域旨在控制纳米级系统中的旋转,这在过去几十年中导致了数据存储和磁场传感技术的天文学改善,并获得了2007年诺贝尔物理学奖的认可。纳米级固态器件中的旋转也可以充当新兴量子技术的量子位或量子位,例如量子计算和量子传感。由于磁性与旋转之间的基本联系,铁磁体在许多固态自旋装置中起着关键作用。这是因为在费米水平上,状态的电子密度是自旋偏振的,这允许铁磁体充当自旋的电气喷射器和检测器。铁磁体在费米水平的低自旋极化,流浪磁场,串扰和纳米级的热不稳定性方面存在局限性。因此,需要新的物理学和新材料,以将自旋和量子设备技术推向真正的原子极限。出现的新现象,例如手性诱导的自旋选择性或CISS,其中观察到载体自旋与中性的有趣相关性,因此可以在纳米杂交中发挥作用。这种效果可以允许分子尺度,手性控制自旋注射和检测,而无需任何铁磁铁,从而为装置旋转的基本方向打开了一个新的方向。■密钥参考CISS在此重点的账户中发现了在手性分离,识别,检测和不对称催化等不同领域的无数应用,但由于其对未来旋转基因技术的巨大潜力,我们专门回顾了这种影响的旋转器械结果。第一代基于CISS的自旋装置主要使用手性生物有机分子。但是,也已经确定了这些材料的许多实际局限性。因此,我们的讨论围绕着手性复合材料的家族,由于它们能够在单个平台上吸收各种理想的材料特性,因此可以成为CISS的理想平台。在过去的几十年中,有机化学界对这类材料进行了广泛的研究,我们讨论了已确定的各种手性转移机制,这些机制在CISS中起着核心作用。接下来,我们将讨论对其中一些手性复合材料进行的CISS设备研究。重点是给手性有机碳同素同素复合材料的家族,在过去的几年中,该帐户的作者对此进行了广泛的研究。有趣的是,由于存在多种材料,杂交手性系统的CISS信号有时与纯手性系统中观察到的信号不同。鉴于手性复合材料的巨大多样性,到目前为止,CISS设备研究仅限于几种品种,预计该帐户将增加对手性复合材料家族的关注,并激励对其CISS应用的进一步研究。
altermagnetism是与抗铁磁体和铁磁体的新阶段,该阶段的新阶段与抗铁磁铁和铁磁体相似性,由于其方向依赖性磁性,引入了一种新的指导原理,用于Spintronic/Spintronic/Thermoelectric应用。实现对设备设计的利用Altermagnetism的承诺取决于识别具有可调传输特性的材料。迄今为止,对固有的altermagnets的搜索集中在各向异性在晶体学对称和带结构中的作用。在这里,我们提出了一种不同的机制,该机制通过利用范·霍夫(Van Hove)奇异性的存在来实现哈伯德局部排斥与巡回磁性之间的相互作用来实现这一目标。我们表明,Altermagnetism在广泛的相互作用和掺杂范围内是稳定的,并且我们专注于自旋荷利转化率的可调性。