摘要:(1)背景:三阴性乳腺癌(TNBC)是乳腺癌的独特亚组,表现出高水平的复发,而新辅助化疗在其治疗管理中是有益的。抗PD-L1免疫疗法改善了新辅助治疗在TNBC中的作用。(2)方法:在铁毒性引起的诱导剂治疗下开发了用于综合的磁法分析的免疫调节和与螺旋病相关的R包装:用螺旋病诱导剂刺激的TNBC细胞(GSE173905(GSE173905)(GSE173905)(GSE154425),单细胞数据(GSE154425),单细胞数据(GESE191911912246)和群体specetrients and Specter sexpsertry sexpsertry stractrienty。临床结合分析是用乳腺肿瘤(TCGA和代理队列)进行的。Protein-level validation was investigated through protein atlas proteome experiments.(3)结果:Erastin/rsl3投动诱导者在TNBC细胞中上调CD274(MDA-MB-231和HCC38)。In breast cancer, CD274 expression is associated with overall survival.表现出高表达CD274的乳腺肿瘤上调了一些与预后相关的铁铁蛋白驱动因素:IDO1,IFNG和TNFAIP3。在蛋白质水平上,在盐霉素治疗下,在乳腺癌干细胞中确定了CD274和TNFAIP3的诱导。在用环磷酰胺处理的4T1肿瘤中,发现CD274的单细胞表达在髓样和淋巴样纤维化细胞中增加,与其受体PDCD1无关。在乳腺肿瘤转录组分层患者预后计算的CD274铁凋亡驱动器评分:在基础亚组中观察到较低的分数,其复发性风险得分较高(OnCotypEDX,GGI和GGI和Gene70评分)。在TNBC亚组中发现了代表队列中的CD274,IDO1,IFNG和TNFAIP3。发现CD274的铁质驱动器评分与总体生存有关,与TNM分类和年龄诊断无关。在蛋白质水平(4)结论中确定了在乳房导管癌的活检中CD274,TNFAIP3,IFNG和IDO1的肿瘤表达:在蛋白质水平(4)结论:螺旋菌病诱导的PD-L1在TNBC细胞中升级PD-L1在TNBC细胞中已知是一种有效的免疫疗法疗程的tnbc患者。基础和TNBC肿瘤高度表达的CD274和铁毒驱动因素:IFNG,TNFAIP3和IDO1。CD274铁质驱动器评分与预后和乳腺癌复发的风险有关。对于反复发作的TNBC提出了抗PD-L1免疫疗法的铁凋亡诱导剂的潜在协同作用。
铁凋亡被认为是脊髓损伤(SCI)激活的细胞死亡途径之一。然而,管理此过程的确切调节机制仍然鲜为人知。在这里,这项研究确定了TRIM32,一种E3泛素连接酶,是神经元铁毒性神经元的关键增强子。trim32通过加速GPX4的降解来促进神经元萎缩,这是甲状腺毒性的必不可少的抑制剂。神经元中TRIM32的条件缺失显着抑制神经元的铁肿瘤并促进神经元存活,最终改善了SCI后小鼠运动功能恢复。然而,TRIM32的过表达表现出严重的神经元丧失和行为功能差,可能会因抑制剂liproxstatin-1而减弱。从机械上讲,TRIM32与GPX4相互作用,在K107处促进了GPX4的K63连接的泛素化修饰,从而增强了GPX4的p62依赖性自噬降解。此外,ROS-ATM-CHK2信号通路在S55处磷酸化的TRIM32,进一步导致SCI后GPX4泛素化和降解以及随后的神经元肥胖病,表明ROS和TRIM32之间的阳性反馈回路循环循环。在临床上,SCI患者可显着促进脂质过氧化。这些发现表明,TRIM32是一种神经元螺氏凋亡增强剂,在SCI后通过促进K63连接的泛素化和随后的p62依赖性自载体脱离GPX4的GPX4,对小鼠的神经元存活和运动型恢复有害。
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。Creative Commons公共领域奉献豁免(http://creativecommons.org/publicdomain/zero/zero/1.0/)适用于本文中提供的数据,除非在信用额度中另有说明。
Ferroptosis is a recently recognized form of regulated cell death driven by small molecules or conditions that induce lipid-based reactive oxygen species (ROS) accumulation, and this iron-dependent form of cell death is morphologically and genetically distinct from apoptosis, necroptosis, and autophagy (8,9). Ferroptosis is characterized by cell volume shrinkage and increased mitochondrial membranes and is mediated by iron-dependent lipid peroxide accumulation (10). The ferroptosis-inducing compounds, such as erastin and Ras selective lethal 3 (RSL3) could inactivate cellular glutathione (GSH)-dependent antioxidant defenses, leading to the accumulation of toxic lipid ROS (11,12). Glutathione peroxidase 4 (GPX4) is a key antioxidant enzyme that is responsible for removing lipid hydroperoxides within biological membranes (8). Once GPX4 inactivation, GSH will loses ability in removing the local peroxidase reaction, which eventually lead to a lipid ROS accumulation and ferroptosis.
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版本的版权持有人于2024年12月29日发布。 https://doi.org/10.1101/2024.12.28.630572 doi:Biorxiv Preprint
在全球范围内,数以百万计的人受到包括亨廷顿氏病(HD),肌萎缩性侧面硬化症(ALS),帕金森氏病(PD)和阿尔茨海默氏病(AD)的神经退行性疾病的影响。尽管已经将大量能源和财务资源投资于与疾病相关的研究中,但治疗方法的突破仍然难以捉摸。细胞的分解通常与神经退行性疾病的发作一起发生。但是,触发神经元丧失的机制尚不清楚。脂质过氧化是铁依赖性的,会引起一种特定的细胞死亡,称为长细毒性,并且有证据表明它参与了神经退行性疾病的致病性级联反应。但是,特定机制仍然不知道。本文重点介绍了基础铁凋亡和相应信号网络的基本过程。此外,它提供了有关当前关于在各种神经退行性条件下氟凋亡作用的研究的概述和讨论。
糖尿病是一种复杂的代谢性疾病,近年来糖尿病及其慢性并发症已成为全球关注的健康热点,寻找有希望的治疗靶点和方向十分重要。铁死亡是一种不同于细胞坏死、凋亡和自噬的新型程序性细胞死亡,铁死亡主要以铁依赖性的脂质过氧化为特征,随着细胞抗氧化能力的降低,积累的活性脂质氧物质会引起氧化性细胞死亡,导致致死水平的铁死亡。近来的研究表明,铁死亡在糖尿病的发生、发展以及糖尿病各类并发症中起着重要的调控作用。本文将总结铁死亡与糖尿病并发症相关的新发现,并提出铁死亡作为治疗糖尿病并发症的潜在靶点。
铁死亡作为一种新的细胞死亡形式,在许多疾病中发挥着重要作用,特别是影响肿瘤的恶性进展和抗肿瘤治疗(Liang et al.,2019;Chen et al.,2021a;Wu et al.,2020)。抗肿瘤治疗分为药物治疗、放射治疗、手术治疗等,其中药物治疗又包括免疫治疗、化疗、靶向治疗等,其中抗肿瘤免疫治疗例如针对PD-1(程序性死亡蛋白1(PD-1)或其配体PD-L1或CTLA4)的目的是增强免疫系统,发挥抗肿瘤的作用。免疫治疗在各类恶性肿瘤的治疗中应用越来越广泛,并表现出良好的治疗效果和远期获益,但其疗效评价仍不明确。研究表明,针对铁死亡有望提高抗肿瘤免疫治疗的治疗效果,提示铁死亡与免疫治疗之间存在潜在的关系。因此,本综述旨在总结铁死亡在抗肿瘤免疫治疗中的作用及研究进展,为后续研究提供参考和提示。
铁死亡是一种不同于自噬、凋亡和坏死的新型受调控的细胞死亡方式,主要由铁依赖性的脂质过氧化所引起。研究表明,铁死亡过程涉及许多常规信号通路和生物学过程。近年来,研究表明铁死亡在包括卵巢癌在内的恶性肿瘤发生、发展和转移中起重要作用,并与化疗、放疗、免疫治疗等联合应用,能抑制卵巢癌细胞的生长,提示铁死亡在卵巢癌治疗中具有重要意义,可能成为新的治疗靶点。本文就铁死亡的特点、其发生机制、在卵巢癌中的作用及其在卵巢癌治疗中的潜在应用进行综述。