当被问及在不久的将来最有可能影响生育率的因素是什么时,我首先想到的是那些生育率极低的国家,特别是欧洲和东亚国家。在众多必然会对低生育率发达国家(最终也会对欠发达国家)的生育行为产生重大影响的因素中,我想强调三个例子。首先,初次生育的不断推迟(以及随之而来的生育挑战),再加上人工生殖技术(ART)和基因操作的作用日益增强,可能会引发有关生育的新伦理问题。其次,当前劳动力市场结构性变化的深化,导致中等技能职业的就业岗位减少,低端市场更不稳定的岗位增加,这可能导致生育率的教育梯度进一步趋于平缓甚至逆转(Adser`a 2017)。第三,社会数字化的特点是社交媒体和互联网作为信息来源占据主导地位,这可能会对不同社会经济群体和不同出身的人的生育决策产生不同的影响。事实上,最近的研究表明,互联网已经对生育模式产生了显著的影响;尽管确定哪些机制在起作用仍然是一个开放的研究议程(Billari 等人,2019 年)。尽管如此,正如提高低生育率国家生育率的政策努力所表明的那样,在这些环境中改变生育水平的幅度是有限的(Gauthier,2007 年)。当纵观世界各地的当前水平时,我们可以看到,总体生育水平变化的潜在幅度最大的是撒哈拉以南非洲地区。表 1 显示了联合国人口司对可持续发展目标各地区总和生育率的估计。预计本十年末生育率将超过更替水平的地区只有非洲、西亚、南亚和中亚,而这些地区中,撒哈拉以南非洲是一个明显的异常值,平均总和生育率接近 5。
土壤肥力图,即使用从SHC Portal收集的网格土壤健康数据中的地理信息系统生成PH,EC,OC,P和K。研究表明,梅加拉亚邦的土壤是非盐水,本质上是酸性的,并且含有高有机碳。发现该州的69.61%面积被略微酸性的土壤覆盖,其次是中等酸性(27.25%)和强酸性(0.09%)的土壤。该州的土壤中的有机碳含量很高,覆盖了88.22%的面积,随后是中低的,覆盖了11.52%和0.26%的面积。还观察到,该州的土壤有69.89%的土壤具有培养基的磷,然后是低磷和高磷含量,分别覆盖18.73%和11.38%的面积。该州的土壤在可用的钾中含量很低,占面积为47.35%的钾,而中钾和高钾分别为45.54%和7.11%的面积。还可以观察到,加洛山的98.77%的土壤略微酸性,而Jaintia Hills的91.98%面积本质上是中等酸性的。卡西山的土壤大多是略微酸性的,覆盖了68.66%的面积,其次是中等酸性和中性土壤,分别覆盖24.69%和6.49%。在Jaintia Hills中,高度有机碳含量最高,占地99.45%,随后在Khasi Hills和Garo Hills的面积分别为98.90%和69.64%。
自 20 世纪 70 年代至今,英国在构建支持生命科学重大进步的政治、立法和监管环境方面一直走在世界各国的前列,这反过来又为个人提供了克服不孕不育和建立家庭的新机会,推动了对基因组力量的突破性研究,并扩大了社会对胚胎研究的理解和接受范围,以改善人类健康。这是一项重要的遗产,尽管必须积极而雄心勃勃地继续下去。征程尚未结束,自满不是一种选择。
脱颖而出的生育能力保存(FP)是肿瘤患者的首要关注点,应被视为其整体癌症管理策略的重要组成部分。在FP指南中已经确认了这个问题的大小。关于提供FP服务(包括治疗策略)和程序的标准化的协调指南和政策的制定和执行对于克服这些治疗服务的提供和在癌症治疗中的延迟至关重要。应将FP的问题和管理癌症患者治疗和随访的方法作为其管理指南的组成部分,从而为患者提供有关生育性保存的明确建议。在本手稿中,我们简要概述了现有的国际准则历史记录和肿瘤患者FP服务的全面网络。此外,我们介绍了Royan Institute的指南,专门为保存女性肿瘤患者的生育而设计。
摘要:近年来,ART 领域产生的数据量呈指数级增长。数据种类繁多,从视频到表格数据。同时,人工智能 (AI) 逐渐应用于医疗实践,并可能成为提高 ART 成功率的有前途的工具。AI 模型可以弥补生育诊所中几个关键程序(尤其是胚胎和精子评估)缺乏客观性的缺陷。已经开发了各种模型,尽管其中一些模型表现出良好的性能,但仍有许多挑战需要克服。在这篇综述中,我们介绍了 ART 背景下的 AI 最新研究。我们讨论了所提出方法的优缺点,特别是在临床相关性方面。我们还解决了阻碍 AI 在临床上成功使用的缺陷,并讨论了未来使 AI 真正适用于 ART 的可能性和重要方面。
线粒体DNA(mtDNA)编码了对线粒体正常功能至关重要的蛋白质和RNA。mtDNA突变导致的线粒体功能障碍与多种疾病有关,包括生育障碍。由于mtDNA在配子发生和受精过程中经历相当复杂的过程,因此阐明mtDNA在此过程中的变化和功能及其对配子质量和生育力的本质影响具有重要意义。由于基因编辑技术的出现和快速发展,线粒体基因组编辑(MGE)取得了突破性进展,为治疗mtDNA相关疾病提供了巨大潜力。在本综述中,我们总结了线粒体及其独特基因组的特点,强调了它们的遗传模式;说明了mtDNA在配子发生和受精中的作用;并讨论了基于MGE的潜在疗法以及该领域的前景。
摘要 DMRT1 是几种脊椎动物的睾丸决定因子,但它是否参与哺乳动物睾丸分化(其中 SRY 是睾丸决定基因)仍不明确。到目前为止,DMRT1 功能丧失已在两种哺乳动物中得到描述,并导致不同的表型:男性的性发育障碍 (46,XY DSD) 和小鼠的男性不育。因此,我们通过 CRISPR/Cas9 消除了第三种哺乳动物(兔子)中的 DMRT1 表达。首先,我们观察到 XY DMRT1 −/− 兔胎儿的性腺像卵巢一样分化,这表明 DMRT1 参与睾丸决定。除了 SRY 之外,支持细胞中还需要 DMRT1 来增加 SOX9 基因的表达,该基因是睾丸遗传级联的首位。其次,我们强调了 DMRT1 在生殖细胞中的另一种功能,因为 XX 和 XY DMRT1 −/− 卵巢没有经历减数分裂和卵泡发生。XX DMRT1 −/− 成年雌性不育,表明 DMRT1 对雌性生育力也至关重要。总之,这些表型表明非哺乳类脊椎动物(如鸟类)和非啮齿类哺乳动物之间存在进化连续性。此外,我们的数据支持 DMRT1 突变可能与不同的人类病理有关,例如 46、XY DSD 以及男性和女性不育症。
全球,大多数牛肉繁殖牛群都是自然交配的。因此,识别和选择肥沃的公牛的能力对于生产力和遗传提高至关重要。在这里,我们从六个热地改编的品种中收集了十种与生育率相关的表型,用于6,063名公牛。表型由四个公牛构象性状和六个与公牛精液质量直接相关的特征。我们还为所有动物生成了高密度DNA基因型。总共分析了680,758个单核苷酸多态性(SNP)基因型。在不同品种中观察到的同一性状的基因组相关性是大多数品种比较的阴囊周长和外壳评分的位置,但对于正常精子的百分比接近零,表明该性状的遗传背景有分歧。我们证实了在参考人群中存在某个品种对在跨批性验证方案中准确基因组估计值(GEBV)产生的重要性。平均GEBV精度从0.19到0.44不等。当该品种在参考人群中时,范围提高到0.28至0.59。与基因HDAC4相关的变体,来自精子发生相关(SPATA)蛋白质家族的六个基因,并将29个转录方面鉴定为候选基因。总的来说,这些结果使得非常早期的牛育特征选择,支持当前在热带牛肉生产系统中发生的遗传改善策略。这项研究还提高了我们对哺乳动物男性生育能力的分子基础的理解。