摘要 - 现在,混凝土用于最大的建筑项目,并且在不久的将来,没有其他选择。有必要开发更好的质量混凝土,以延长生存更长的生存并具有提高机械品质,以延长任何结构的使用寿命,因为大量混凝土被用于新建筑工作。不可能改变其天生的易碎性或对任何混凝土结构的拉伸强度的要求。纤维增强混凝土(FRC)似乎是可行的替代品。聚酯和聚丙烯纤维(PP)作为混凝土中的二级加固以改变其脆性特性的实际应用是本研究论文的主要主题。在这项调查中采用了M40级混凝土等级。结果,将不同比例的聚酯和聚丙烯纤维添加到混凝土中。按该顺序按混凝土的重量进行0.32、0.37、0.42和0.47。为了研究聚酯和聚丙烯在混凝土中的使用,进行了一系列受控的实验室测试。对于压缩和弯曲强度,仅在第一个样品中评估了基本混凝土混合物。在0.32、0.37、0.42和0.47%的聚丙烯纤维中分别评估第二个样品的抗压强度和弯曲强度,将其添加到混凝土混合物中。在第三个混凝土样品中测试了聚酯和聚丙烯纤维。演示了如何在混凝土中添加纤维可以提高其质量。
包。patran 3.0是由PDA工程创建的计算机软件包的最新版本,用于预处理和后处理有限元代码。[f兼容,Patran 3.0将用于定义组件表面的几何形状TOR纤维放置Windin_操作。这些表面的地貌必须使用Patran的模型替代能力产生。然后将计算机模型加载到硅图形工作站中,以便可以定义光纤放置路径。定义了光纤路径后,生成了FPM的实际机器指令代码。然后将机器指令加载到FPM中,并且可以制造所需的组件。FPM离线软件最初旨在读取Patran 2.5中性文件和I-DEAS(计算机自动化设计(CAD)软件包)通用文件。辛辛那提米拉克龙将评估并建议蒂科尔关于帕特兰3.0代码的兼容性。预计这不会是问题,而Patran 3.0代码将是可用的。
要克服常规调节器的带宽限制,可以采用等离子设备。等离子调节剂已显示可运行高达500 GHz [8],因此是用于此类高宽宽应用的理想解决方案。最近通过微环谐振器调制器(MRR)[9]和高达363 GBIT/s的净数据速率(MACH-ZEHNDER调制器(MZM)[10])已被证明。这些等离子调节剂基于硅光子(SIPH)平台,因此可以无缝地集成到标准的SIPH过程中以进行整体整合。这有望通过共包装[11],启用小占地面积[12]和低驾驶电压[13]来进一步改进,这是400 Gbit/s tranceivers的理想候选者。然而,单个载体IM/DD演示仍缺少血浆以上的血浆以上。
固化:– 浇铸 24 小时后,浇铸部件从模具中脱模并运输到固化罐。某些需要高强度的特殊部件(如铁路枕木)需要蒸汽固化。固化将至少进行 3 天,并在现场安装这些部件后进行进一步固化。运输和安装:– 完全固化后,使用重型卡车将部件运输到现场,并使用起重机和熟练劳动力进行安装。预制建筑部件:- 柱子:-
光频梳(OFC)是一种基于激光的技术,具有转化的计量学,可以以未经先验的精度实现时间和频率测量。超出了其最初的目的,OFC已在基本科学和新兴技术的各个领域采用,例如Au sosos驾驶和无线通信。然而,目前以高度重复速率产生低噪声OFC来源的挑战,具有较高的光学带宽阻碍了其全部潜力。为了应对这些挑战,非线性光纤中的超智能(SC)生成是一种有吸引力的方法,因为它可以在相对较低的泵功率下提供大带宽,但以噪声扩增为代价。本论文探讨了产生基于低噪声SC的OFC来源的新方法,以满足这些新型范围的不断增长的需求。第一个提出的解决方案是一种混合纤维,结合了两种SC生成制度的最佳品质。使用此纤维,可以将超低噪声纤维SC覆盖,覆盖930–2130 nm范围,相位相干性接近统一,频谱分辨出相对强度噪声(RIN)低至0。05%,平均0。01%在750 nm的带宽上,接近接近泵激光噪声的理论极限。这项工作的第二个重要结果是开发了一种新的数值方法,能够模拟在非线性纤维中传播的整个超快脉冲列车并研究其噪声性能的演变。最后,引入了空心核纤维,是达到新的SC制度(包括深紫外线和TW峰值功率)的一种有希望的方法。We use this model to corroborate and explain measurements of unprecedented low noise observed on a dual-comb SC source, including shot-noise-limited SC generation and up to 20 dB of RIN suppression.
光纤是一种沿其长度传输光的玻璃或塑料纤维。光纤光学是应用科学与工程的交叉学科,涉及光纤的设计和应用。光纤广泛用于光纤通信,它允许在更长的距离和更高的带宽(数据速率)下传输,因为光的频率比任何其他形式的无线电信号都要高。光通过全内反射保持在光纤的核心中。这使得光纤充当波导。光纤被用来代替金属线,因为信号沿光纤传输时损耗更小,而且它们也不受雷暴引起的电磁干扰的影响。光纤还用于照明,并被包裹成束,因此它们可用于传输图像,从而允许在狭小空间内观看。专门设计的光纤用于各种其他应用,包括传感器和光纤激光器。
近年来,天然纤维增强复合材料由于其质量轻、耐磨、可燃、无毒、成本低和可生物降解等特性而受到广泛关注。在各种天然纤维中,亚麻、竹、剑麻、大麻、苎麻、黄麻和木纤维尤其受到关注。世界各地对利用天然纤维作为增强材料来制备各种类型复合材料进行了大量研究。然而,缺乏良好的界面黏附力、熔点低和耐湿性差使得天然纤维增强复合材料的使用不那么有吸引力。天然纤维的预处理可以清洁纤维表面、对表面进行化学改性、停止吸湿过程并增加表面粗糙度。在各种预处理技术中,接枝共聚和等离子处理是天然纤维表面改性的最佳方法。天然纤维与乙烯基单体的接枝共聚物可在基质和纤维之间提供更好的粘合性。本文回顾了预处理天然纤维在聚合物基质复合材料中的应用。还讨论了天然纤维表面改性对纤维和纤维增强聚合物复合材料性能的影响。POLYM. ENG. SCI.,49:1253–1272,2009 年。ª 2009 年塑料工程师协会
TAK报告中报告的数字在倾销保证金评论2:商业是否应调整房屋市场间接销售费用变量以准确反映正确的货币评论3:商业是否应调整美国销售宇宙在此程序评论中捕获所有相关销售4:商业是否应计算出一个房屋市场销售VI的报告计费调整的正常值净值。建议
电纺聚合物纤维由于其多功能性,可调性和广泛的应用而引起了极大的关注。本期特刊探讨了电纺技术,新型聚合物材料以及具有增强功能的纤维的结构优化。的关键应用程序包括但不限于生物医学工程,包装,环境补救和智能纺织品,并提交智能纺织品,以及多物质和纳米结构纤维和纱线的新兴趋势。通过将尖端研究汇总在一起,本期特刊旨在促进基于聚合物的电纺纤维领域的进步,并激发高级工程应用中的小说和绿色用途。