PACS 03.67.-a, 42.50.-p 摘要 在本文中,我们探索了一种同时在光纤和大气信道上运行的混合量子通信协议。这种新协议解决了在城市环境中铺设光纤可能不切实际或成本过高的问题。通过将副载波 (SCW) 量子密钥分发 (QKD) 与相位编码相结合,我们的方法增强了量子通信系统的灵活性和可靠性。我们开发并测试了一种大气光学模块,该模块配备自动调谐系统以确保精确的光轴对准,这对于最大限度地减少湍流环境中的信号损失至关重要。实验结果表明,在各种信道长度上都有稳定的筛选密钥速率和低量子比特误码率 (QBER),证实了我们的混合协议在确保各种传输环境中的通信方面的有效性。 关键词 自由空间光学、量子通信、量子密钥分发、大气信道。致谢 IZL、MAF、DVS 和 AKK 在俄罗斯科学院喀山科学中心 FRC 政府任务的支持下完成了大气信道实验。VVC、SMK 的分析工作得到了俄罗斯科学基金会 (项目编号 24-29-00786) 的资助。 引用 Latypov IZ、Chistyakov VV、Fadeev MA、Sulimov DV、Khalturinsky AK、Kynev SM、Egorov VI 光纤和大气信道的混合量子通信协议。纳米系统:物理化学数学,2024,15 (5),654–657。
现有电信(电信)宽带互联网提供商广泛采用了FTTH的使用,其中许多过度建筑的现有铜扭曲的配对电话网络曾经使用数字订户线(DSL)用于宽带互联网服务。当然,除了有线电视和电信运营商之外,超过1,100多个光纤宽带服务提供商已经部署了FTTH和PON技术多年了,这些部署仍在迅速增长。HFC和光纤网络的碳足迹计算基于当前来源;但是,在两个生态系统中都进行了持续的改进,因此这些发现将继续发展。例如,这些生态系统中的公司正在努力减少材料,包装和电源的使用,并且使用可回收材料和可再生电源的使用将有所增加,所有这些都将减少碳足迹。一些企业正在接受循环经济的概念,在这种经济中,材料被回收以减少浪费。虽然100%的循环经济与当前和近期技术不切实际,但采用此类理念将继续减少碳足迹。
1羊毛,R。P.和O'Conner,K。M.,“聚合物中的裂纹愈合理论”,《应用物理学杂志》,第1卷。52(10),1981。2 Agarwal,V。,“分子迁移率在热塑性复合材料的巩固和键合中的作用”,博士学位论文,特拉华大学,1991年。3 Pitchumani,R.,Don,R。C.,Gillespie,J。W.和Ranganathan,S。,“具有原位合并的热塑性拖放过程的设计和优化”,《复合材料杂志》,第1卷。31(3),1997。4 Gillespie,J。W.和Bastien,L。J.,“无体热塑料融合键合接头的强度和韧性的非等热愈合模型”,《聚合物工程与科学》,第1卷。31(24),1991。
在此建模任务的第二部分中,散射边界条件用于截断模拟域。通常,当使用散射边界条件时,假定到达边界的散射波在靠近边界的正常方向上传播的边界传播。但是,当我们进行模式分析时,我们知道该模式还将在平面外向传播,这与应用散射边界条件的边界相切。因此,沿正常方向的波矢量分量为
营养不良肌肉中的病理过程包括明显的变性和肌肉纤维的再生。这些过程可以通过测量肌肉纤维的直径以及确定具有集中核的肌肉纤维的比例(指示肌肉再生)。所描述的方法依赖于通过使用肌肉纤维横截面的最小“ FERET直径”来说明肌肉纤维尺寸的确定。与肌肉纤维尺寸的其他形态计量参数不同,最小的“ Feret直径”在实验误差(例如截面角的方向)上非常健壮。此外,在一组代表性的肌肉中,最小的“ FERET直径”可靠地区分营养不良和正常表型。如果不可能评估最小的“ Feret直径”,则建议提出替代参数。此外,将集中核的百分比确定为指示营养不良肌肉再生的量度。一旦可以使用整个肌肉的数字图像,就可以轻松实现其他测量参数(例如总肌肉横截面区域)。与其他染色程序结合使用,可以通过对系统进行少量修改来评估其他病理参数(例如坏死区,巨噬细胞浸润等。)。
摘要 - 我们使用管状空心光子光子晶体纤维的高温感测测量进行报告,该光子晶体纤维显示出由八个2.4 µm厚的覆层管形成的微观结构。与在可见的和红外范围内运行的其他空心纤维相比,我们纤维的覆层管的厚度较大,其透射光谱中的多个狭窄的透射频段(在光谱范围为400 nm和950 nm之间的6个带中),并使温度传感测量的实现有益。我们设备的操作原理基于温度变化引起的纤维传输带的热效应和热膨胀引起的光谱移位。为了研究传感器操作,我们在坡道和坡道的场景中都监测了纤维传输带的光谱位置,从室温到1085ºC。此外,我们通过评估描述纤维传输特征的分析模型来研究优化机会,并讨论了增强传感器性能的替代方法。此外,我们的纤维表征实验表明,与管状空心核纤维中的缩放定律相一致的限制损失趋势。我们因此了解,本手稿中呈现的结果突出了基于微观结构的空心光纤的温度传感器开发的相关途径,并带有厚厚的覆层管。
2.1 简介 . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.5.2 频分复用 . . . . . . . . . . . . 15 2.5.3 波分复用 . . . . . . . . . . . . 15 2.6 光纤电缆 . . . . . . . . . . . . . . . . . 16 2.6.1 物理接触连接器 . . . . . . . . ...
摘要:碳纤维增强聚合物(CFRP)复合材料属于高级类复合材料,在战略应用中通常是首选。然而,在制备增强树脂,易发的基质和纤维 - 矩阵界面中形成的脆性,气泡通常会导致复合结构在分层和灾难性衰竭方面导致复合结构的失败。So, in the current work, Epoxy matrix CFRP composites are made using a hand lay-up process with varied amounts of Graphene Oxide (GO) (0%,0.25%,0.5%, and 1%) as a Nano Filler with Epoxy Polymer and nearly 90% of air bubbles are removed with the help of vacuum pump and desiccator.样品将根据ASTM标准制备,并在张力和3点弯曲条件下进行测试。在0.25%,1%GO增强复合材料的最大拉伸强度,最大弯曲强度为866.67mpa和761.22mpa。关键词:复合材料,CFRP,环氧树脂,碳纤维,拉伸试验,弯曲试验,氧化石墨烯(GO),环氧树脂,硬化剂
FiSens 是一家年轻的公司,由弗劳恩霍夫海因里希-赫兹研究所的一个团队于 2018 年创立。十多年来,该团队一直专注于开发逐点 (PbP) 飞秒激光工艺,用于在光纤内刻录 FBG 和其他光栅结构。利用这种专有工艺,FiSens 还在光纤芯内精确周期性地形成椭球纳米结构。通过这种专利装置 [8],FiSens 可以将普通光谱仪通常需要的所有光学成像组件(狭缝、透镜或镜子、衍射光栅、透镜)直接编码到光纤芯中(图 5)。由此产生的光谱仪只需要第二个组件:一个探测器(例如 CMOS),放置在光纤旁边的侧焦平面上,以捕获所有高强度的耦合和衍射光。