帕克博士:这些定义有特定的标准。益生菌是活体生物,在足够的量中赋予健康益处;它们通常是细菌性质的,但是酵母益生菌在兽医学中变得更加流行。您正在提供一定数量的,通常是活的微生物,这些生物将有助于重新建立肠道平衡。益生元是有益的肠道微生物的不可消化食品,它们的作用与可溶性纤维类似。它们通常会发酵以影响肠道微生物组,并且通常包括在宠物食品中,但也可以补充。示例包括菊粉,灌肠工具含糖和菊苣。综合药是包括益生菌和益生元的产品,并被归类为互补或协同作用。和添加到此列表的最新术语是后生生物。后生物学是肠道中益生元和益生菌的细分产生的化合物。短链脂肪酸是最常见的后生物后脂肪酸,它们在肠道和系统上可能具有许多有益的作用。我很少开处方益生菌,因为我做了很多慢性肠病咨询,许多人已经在益生菌上,并且仍然有腹泻的临床迹象,所以我不觉得单独亲生动物通常会在这些慢性肠病患者中产生很大的不同。我还没有将Saccha-Romyces Boulardii用作基于酵母的益生菌,但这是一个新兴的选择。在俄亥俄州立大学,我们的ER定期将家纤维送入急性腹泻病例。i更多地涉及益生菌,例如可疑的抗生物诱导的营养不良或急性腹泻。如果患者患有急性腹泻,他们需要离开诊所,我通常会给他们纤维补充剂,无论是食物中还是补充食物。我们不会在这里发送甲硝唑或抗生素;我们用纤维将它们送回家。
对可持续材料的日益增长的需求激发了对自然来源衍生的纳米纤维素的兴趣。这项研究的重点是使用纤维素酶通过酶水解从椰子纤维中合成纳米纤维素。为了优化生产过程,使用了1500 U/ml的纤维素酶浓度,并具有不同的酶体积(100、200、300、400和500 µL)。预处理步骤包括10%NaOH的划定和40%H 2 O 2的漂白,从而促进纤维素提取。综合分析表明,椰子纤维含有42.95%的α-纤维素,72.51%全纤维素,29.56%的半纤维素和22.77%的木质素。加入400 µL纤维素酶,达到了10.21 µm的最佳纳米纤维素大小(NSSK),表明纤维的酶促分解有效。扫描电子显微镜(SEM)表征了具有细纤维和表面不规则性的不均匀形态。傅立叶变换红外光谱(FTIR)的结果显示出显着的化学变化,包括在1728 cm -cm -1时峰值降低,峰从1600 cm -到1598 cm -μ的变化,以及在1028-1050 cm -〜1028-1050 cm -〜的范围内的增强峰。这些改变表明有效修饰木质素和半纤维素,证实了从椰子纤维成功生产环保纳米纤维素的。调查结果强调了利用椰子纤维作为纳米纤维素生产的可再生资源的潜力,为各种行业的可持续应用铺平了道路。©2025 SPC(SAMI Publishing Company),《亚洲绿色化学杂志》,用于非商业目的。
植物纤维是一类生物量资源,地球上最丰富的材料之一。作为具有优异特异性刚度和强度的植物纤维之一,bast纤维在各个工业部门的生物复合材料领域一直受到关注。这项研究是为了提供Bast纤维复合材料的全面概述。分析了五种类型的最常见的冰纤维(拉米,黄麻,肯纳夫,亚麻和大麻纤维)的特征性,化学组成和性能,并分析了它们在生物复合材料中的功能化。用途的工程技术和性能,例如火焰粘贴,吸附,增强性,可生物降解性绿色可持续性和可回收性。还讨论了Bast纤维复合材料的挑战和未来发展。审查有望为有效的工程设计提供平台数据库,但有见地的理解,并扩大了Bast纤维复合材料的范围,并为功能化的Bast纤维复合材料提供进一步的创新。
摘要:纤维增强聚合物是一种由纤维和树脂组成的先进复合材料。这是修复现有结构和新结构的一种经济高效且有效的材料。此外,这些复合材料具有出色的机械性能,包括强度,抗冲击力,刚度,承载能力和柔韧性。这项实验研究旨在研究经过机械和非破坏性测试时包裹在不同层中的AFRP和CFRP材料的行为。确认M30级的具体研究用于这项实验研究。为了确保在整个研究中确保一致的具体质量,施放了各种测试标本并进行标准测试,包括压缩测试,分裂拉伸测试,破裂模量,弹性模量以及对硬化混凝土的影响测试。此外,回弹锤和UPV测试是确定混凝土质量的两种重要NDT方法。使用各种样品进行了测试,包括立方体(150mmx150mm),气缸(150mmx300mm),棱镜(100mmx100mmx500mm)和圆盘(63.5mm x 152.4mm)。实验结果表明,与单个和双层包装中的AFRP和无限制样本相比,与CFRP限制的混凝土标本相比具有更高的强度。关键字:纤维增强聚合物,环氧树脂,芳香纤维增强聚合物,碳纤维增强聚合物,机械性能,NDTA,单层和双层层。
摘要:铁路基础设施在确保中国货物和客运的连续性方面发挥着关键作用。在极端负载和环境条件下,铁路结构容易发生劣化和故障,导致整个运输系统中断。已有多种技术用于铁路结构的健康监测。光纤传感器因其固有优势而成为广泛认可的技术,例如灵敏度高、抗电磁干扰、重量轻、体积小、耐腐蚀以及易于集成和网络配置。本文介绍了光纤传感技术的最新进展及其在铁路基础设施中的实际应用。此外,还描述了光纤传感器的应变传递分析以反映参数。还宣布了人工智能贡献的智能概念。最后,讨论了基于智能概念的铁路基础设施光纤传感器的现有和未来前景。该研究可以为理解人工智能在铁路结构健康监测系统中的问题提供有用的指导。
1978 年,决定出版更多专业专著,涵盖原始飞行测试手册第 1 卷和第 2 卷的各个方面,包括飞机系统的飞行测试。1981 年 3 月,飞行测试技术组 (FTTG) 成立,以执行这项任务并继续编写飞行测试仪表系列卷。这个新系列的专著(AG237 除外,它是单独编号的)将作为单独编号的卷在 AGARDograph 300 中出版。1993 年,飞行测试技术组改组为飞行测试编辑委员会 (FTEC),从而更好地反映了其在 AGARD 内的实际地位。幸运的是,卷的工作可以继续进行,而不会受到这一变化的影响。
现代航天器和运载火箭的设计更倾向于降低系统级设计和组装的复杂性。为了在降低这些复杂性的同时保持较高的整体系统性能,使用智能材料和智能结构部件是一种众所周知的做法,目前越来越受到空间系统设计人员的关注。本文讨论了智能空间结构的概念,特别是用于航天器和运载火箭应用的嵌入光纤传感器 (OFS) 的碳纤维复合材料结构。本研究重点介绍了此类油箱的操作要求以及光纤传感器实现的智能功能。对于后者,对光纤布拉格光栅传感器 (FBG) 和基于光频域反射仪 (OFDR) 的分布式光纤传感器 (DOFS) 进行了定量比较,以说明它们的核心性能参数,例如灵敏度、传感范围、动态测量能力和空间分辨率。与传统电子传感器相比,光纤传感器在恶劣环境中的性能和可靠性提高,同时尺寸、质量和功耗降低。嵌入碳纤维结构的光纤传感器已证明其能够提供准确的实时温度测量和监测结构完整性,同时精确检测可能的破裂和故障点,如文献综述中讨论和展示的那样。光纤传感在智能推进剂储罐中的应用可能会扩展到检测流体泄漏,还可以通过温度映射提高推进剂计量的精度,并可用于地面鉴定、飞行前测试以及在轨运行、状况和结构健康监测。本文介绍了一种在复合材料压力容器中嵌入 FOS 的最佳方法,并讨论了光纤传感器的相关放置和定位方法,并结合了一个简化的单组分分析应力-应变传递模型,该模型推导出沿最大主方向(即 σ Max Principal )的应力分量。这种新方法被认为可用于在复合材料结构(例如航天器中的压力容器和轻质结构)中最佳地使用嵌入式 FOS。人们相信,简化的模型将为有效的数据解释和处理铺平道路,利用航天器上有限的计算资源。
特定客户的内部、个人或教育课堂使用,由美国材料与试验协会 (ASTM) 授权,但须向版权许可中心支付适当的费用,地址:222 Rosewood Drive, Danvers, MA 01923;电话:508-750-8400;在线:http://www.copyright.com/。
抽象的高维运动计划问题通常可以通过使用多级抽象来更快地解决。虽然有多种方式正式捕获多级抽象,但我们以纤维束的方式制定了它们。纤维束基本上使用本地产品空间来描述状态空间的低维投影,这使我们能够根据捆绑限制和捆绑截面来简化和得出新颖的算法。鉴于这种结构和相应的可允许约束函数,我们为高维状态空间开发了高度有效和基于最佳采样的运动计划方法。这些方法通过使用捆绑图来利用捆绑的结构。这些原语用于创建新颖的捆绑计划者,快速探索商的空间树(QRRT*)和商空间路线图计划者(QMP*)。两个计划者均显示出概率完整且几乎渐近地最佳。为了评估我们的捆绑计划者,我们将它们与四个低维情况的基准测试和基于经典的计划者进行了比较,以及八个高维场景,范围从21至100度的自由度不等,包括多个机器人和非健康的约束。我们的发现显示了多达2到6个数量级的改进,并强调了多级运动计划者的效率以及使用Fier Bundles的术语来利用多级抽象的有益。