在广泛温度范围内的扩展系数。[2] CFS不仅可以用作有效的热管理材料,以维持具有高热通量的微电源组件的功能和可靠性,而且还用作高性能复合材料,用于对空气空间场中飞行设备的热保护。[3]尽管有广泛的用途,但基于音调的CFS是唯一具有高成本的高度传导性CF的商业物种。[4]作为一种镇压,其他商业板的CF具有强大的机械性能,但由于其有限的石墨结晶度,导热率较差,从而确定了它们作为轻质结构材料的限制应用。[2a,5]在这种情况下,有必要将高度传导纤维的替代来源扩展到唯一的基于螺距的CF之外。[2b,6]一个直观的选择是将基于PAN的CFS转换为高电导传导性的特征,但仍然是一项禁止的任务,这受到线性Poly-Merers 1D拓扑与目标石墨气质的2D拓扑之间的固有不相容性的挑战。[5b,7]
植物纤维与水泥基质的结合在材料新鲜状态和硬化状态下会产生不同的问题。一些研究建议用化学、物理或热处理方法处理植物纤维。这项研究的目的是通过使用无污染产品白醋来处理掺有短亚麻纤维的水泥砂浆,以改善其性能。选择这种天然处理方法是为了清洁纤维表面,部分去除已知会严重干扰材料在新鲜状态下的行为(尤其是在稠度和凝固时间方面)的非纤维素化合物。测试了两种处理的浸泡时间,分别为 2 小时和 24 小时。为了评估这种处理的效率,对处理过的纤维和原始纤维进行了拉伸、热和吸水测试。制备了不同的砂浆配方(对照砂浆、含有原始纤维的砂浆和含有处理过的纤维的砂浆),并在新鲜和硬化状态下进行了表征。结果表明,纤维的吸水率显著降低,平均拉伸强度增加。水泥复合材料的稠度、初凝时间和机械性能等方面的性能也得到了改善。
近年来,天然纤维增强复合材料由于其质量轻、耐磨、可燃、无毒、成本低和可生物降解等特性而受到广泛关注。在各种天然纤维中,亚麻、竹、剑麻、大麻、苎麻、黄麻和木纤维尤其受到关注。世界各地对利用天然纤维作为增强材料来制备各种类型复合材料进行了大量研究。然而,缺乏良好的界面黏附力、熔点低和耐湿性差使得天然纤维增强复合材料的使用不那么有吸引力。天然纤维的预处理可以清洁纤维表面、对表面进行化学改性、停止吸湿过程并增加表面粗糙度。在各种预处理技术中,接枝共聚和等离子处理是天然纤维表面改性的最佳方法。天然纤维与乙烯基单体的接枝共聚物可在基质和纤维之间提供更好的粘合性。本文回顾了预处理天然纤维在聚合物基质复合材料中的应用。还讨论了天然纤维表面改性对纤维和纤维增强聚合物复合材料性能的影响。POLYM. ENG. SCI.,49:1253–1272,2009 年。ª 2009 年塑料工程师协会
摘要:为了加速双色纤维,基于纤维的功能透气设备和其他技术纤维的工业化并为保护发明人的财产权,有必要开发快速,经济且易于测试的方法,以提供一些指南,以制定相关测试标准。在本研究中开发了一种基于横截面原位观察和图像处理的定量方法。首先,纤维的横截面是通过非嵌入方法迅速制备的。然后,将传输和反射型金属显微镜用于原位观察并捕获纤维的横截面图像。这种原位观察结果允许对双组分纤维的类型和空间分布结构进行快速识别。最后,根据AI软件的密度,横截面面积和每个组件的总测试样品,通过AI软件迅速计算了每个组件的质量百分比含量。通过比较轨道显微镜的超深度,差异扫描量热法(DSC)和化学溶解方法,定量分析是快速,准确,经济的,易于操作,节能且对环境友好的。此方法将广泛用于智能定性识别和对双组分纤维,基于纤维的纤性设备和混合纺织品的定量分析。
手稿于2023年12月12日收到;接受出版日期2024年1月10日;当前版本的日期2024年1月23日。Gilles Freddy Feutmba和Yu-tung Hsiao的工作得到了研究基金会的博士学位赠款基础研究 - 根据赠款1S68218和赠款1SHF924N的支持。(通讯作者:Jeroen Beeckman。)Xiangyu Xue, Brecht Berteloot, Yu-Tung Hsiao, Kristiaan Neyts, and Jeroen Beeckman are with the Liquid Crystals and Photonics Research Group, ELIS Department, Ghent University, 9052 Ghent, Belgium (e-mail: Xiangyu.Xue@UGent.be; Brecht.Berteloot@UGent.be; yutung.hsiao@ugent.be; kristiaan.neyts@ugent.be;Enes Lievens and Gilles Freddy Feutmba are with the Liquid Crystals and Photonics Research Group, ELIS Department, Ghent University, 9052 Ghent, Belgium, and also with the Photonics Research Group, Department of Information Technology, Ghent University-imec, 9052 Ghent, Belgium (e-mail: Enes.Lievens@UGent.be; GillesFreddy.Feutmba@UGent.be).lukas van Iseghem和Wim Bogaerts与比利时Ghent University-IMEC信息技术系的光子研究小组一起,比利时Ghent(电子邮件:lukas.vaniseghem@ugent.be; wim.bogaerts; wim.bogaerts@ugent.be)。本信中一个或多个数字的颜色版本可从https://doi.org/10.1109/lpt.2024.3352278获得。数字对象标识符10.1109/lpt.2024.3352278
摘要 - 在高等教育中,培养鼓励学生参与现实世界挑战的环境对于专业发展至关重要。这一原则为我们与第八学期纳米技术工程专业学生的合作努力支撑。通过创新的方法,例如合成结合菠萝果皮的聚合物纤维,我们解决了环境问题并利用菠萝废物的未开发潜力。菠萝行业每年产生大量的非利用废物,主要是茎,牙冠和果皮,占整个水果的67%。菠萝果皮富含生物活性化合物(如多酚)对化妆品行业的应用有望,如果将它们纳入合适的输送系统中,则可能会增强产品(例如提拉配方)。在目前的工作中,使用商业挤出机合成了装有10%,20%和30%菠萝果皮粉(PP)的聚乳酸(PLA)和多碳酸酯(PCL)纤维。傅立叶变换红外和差异扫描量热法证实了由于形成了新的化学键和相互作用的有效PP掺入纤维中。使用扫描电子显微镜(SEM)进行的形态表征表明,纤维的横截面长度从3.7μm到90.19μm。高性能液相色谱和叶核方法评估了酚类化合物含量和释放速率。PLA纤维具有20%的PP,显示出酚类化合物的最大保留率,为1243.69±234.14 µg化合物/ g纤维),而PCL纤维在24小时内显示出迅速释放,高达95.79±5.94%。这些结果表明,商业挤出机可以在化妆工业中可能使用的聚合物微纤维作为菠萝果皮中酚类化合物的递送系统的可行性。
摘要:防弹衣对于减轻穿透性伤害和挽救士兵生命至关重要。然而,弹道撞击防弹衣会导致背部变形 (BFD),对战场造成致命伤害构成严重威胁。该研究进行有限元建模以评估防弹衣面板的防护性能。数值模拟考虑了各种参数,包括撞击速度和弹丸撞击角度,这些参数用于估计复合材料层压板的残余速度和损伤模式。使用基于有限元分析的 LS-DYNA 代码进行模拟。研究的主要结果揭示了剑麻和玻璃纤维复合材料的弹道行为的重要见解。该研究确定了剑麻和玻璃纤维复合材料之间的具体响应、损伤发展模式和比较分析。研究结果对于开发先进材料以改善弹道防护具有实际意义。
由伤口碳纳米管纤维制成的链和电缆的理论机械性能 / Migliaccio,Giovanni;雷金纳德(Reginald)des Roches; Royer-Carfagni,Gianni。- 在:国际机械科学杂志。- ISSN 0020-7403。- (2022)。[10.1016/j.ijmecsci.2022.107706]
摘要。追逐可持续性已在复合纤维和再生塑料方面取得了很大的进步,这些塑料在许多领域都可以提供可行的选择。复合纤维以其创纪录的破坏力量到重量的比例和功能的能力而闻名,这就是为什么它们从汽车行业到航空的全部使用。但天然纤维是亲水性的,因此它们与疏水矩阵无法充分混合,它们需要表面调整和阻燃性处理,以便将复合材料表现出来。另一方面,塑料最重要的好处之一是它们的可回收性,回收计划可以做很多事情来应对广泛的塑料污染。回收具有积极的环境影响,但是在塑料回收方面仍然存在重大挑战,包括污染和所有需要解决的不同类型的塑料。可以通过更好地分类和回收塑料废物的方法来为这些问题提供有希望的答案。例如,与通过回收塑料制成的常规材料相比,生命周期评估和碳足迹研究对于确定对环境的影响至关重要。在这项研究中,我们可以看到,通过其生命周期综合纤维的所有内容都可以排出最少的温室气体,从而减少了能量用途以减少污染。一般而言,可持续指标在确保我们基于可靠信息做出选择的情况下绝对必要同样,与处女相比,关于再生塑料的工作通过从塑料废物中节省垃圾填埋场,减少了对原材料的需求和高能源生产技术来降低对环境的影响。
我们建议使用基于光纤的干涉仪搜索标量超轻暗物质(UDM),其颗粒质量在10 - 17-17-10-10 - 13-11 eV = C2ð10-3-3 - 10 Hz。由固体芯和空心芯纤维组成,该提出的检测器将对纤维折射率的相对振荡敏感,这是由于标量UDM诱导的调节型在细胞结构常数α中的调制。我们预测,通过实施检测器阵列或低温冷却,提出的基于光纤的标量UDM搜索有可能达到参数空间的新区域。这种搜索特别适合探测暗物质的太阳光晕,其灵敏度超过了先前的暗物质搜索在粒子质量范围7×10-17-17-2×10-14 eV = C 2上。
