为营养科学和卫生专业社区以及食品行业的专业参与者提供了一般流通,包括Tate&Lyle食品成分的潜在客户。它不是为消费者使用而设计的。标签索赔,健康要求以及我们食材的监管和知识产权状况的适用性因管辖权而异。您应该获得有关我们成分的所有法律和法规方面及其在您自己的产品中使用的建议,以确定在任何特定司法管辖区中的特定目的,索赔,经营,标签或特定申请的适用性。此产品信息已发布供您考虑和独立验证。Tate&Lyle对其准确性或完整性不承担任何责任。Tate&Lyle•5450 Prairie Stone Parkway,Hoffman Estates,IL 60192•1.800.526.5728
结论SuperWool®Prime属于已定义的AES纤维在接触式注册下定义的化学反应,其纤维直径与现有的市场产品相似,表明该产品不会比现有产品更明显地呼吸。这些关键的物理化学特性中的相似性反映在纤维的生物溶解度上,这些纤维显示出属于现有产品产生的范围内的超级尺寸纤维纤维。很明显,从生物耐性的角度来看,这些样品的行为以及它们的共同形态学特性都可以合理地期望在体内表现出相似的生物抗性概况。因此,基于几个关键参数的比较数据,没有科学的理由来保证对超级素质量子化学的测试。的确,当已经对UVCB定义中的化学作用进行了测试,通过和免除的化学作用时,对超级尺寸进行体内生物抗性测试可能会对重复测试的道德批准构成重大挑战。尤其是本文提供的测试结果并未为超级羊毛纤维作为“新物质”的考虑,而是确认其他AES纤维化学生物抗化发现的相似性并支持适用于Super -Wool Prime。附录化学物质身份摩根高级材料是全球AES纤维的领先生产商。机器制造的玻璃体(硅酸盐)纤维(MMVF)具有随机定向和氧化碱/碱氧化物(Na 2 O+K 2 O+CaO+CaO+MoGO+BAO)的含量大于18%。它融化约1500°C(2732°F)。这些产品以几个不同的商标名称销售,但是,为了分类和标签(CLP)(EC/1272/2008)和REACH(EC/`1907/2006)AES光纤被视为符合CLP条目650-016-00-2标准的单一UVCB物质。它的化学身份由436083-99-7 CAS编号定义进一步定义:•以纤维形式制造的化学物质。此类别包含通过吹或旋转碱性氧化物,二氧化硅和其他次要/微量氧化物的熔融混合物而产生的物质。它主要由二氧化硅(50-82wt%)和镁(18-43 wt%),氧化铝二氧化铝和氧化锆(小于6%)和微量氧化物组成。在CLP下的调节外出过程(欧洲),它们被归类为具有以下危险代码的2类致癌物 - H351:怀疑引起癌症。然而,根据调节的注释,它指出,如果可以证明该物质满足以下条件之一,则不需要应用分类:•通过吸入的短期生物抗化测试,表明超过20μM的纤维具有超过20μm的重量半寿命的重量较小;或•通过气管内滴注进行短期生物抗性测试,表明超过20μm的纤维的加权半衰期小于40天;或•适当的腹膜内测试未显示过多的致癌性证据;或•在合适的长期吸入试验中没有相关的致病性或肿瘤变化。
侧泵纤维组合仪在纤维激光设计方面具有多种优势,包括分布式泵的吸收,减少热负荷以及提高的柔韧性和可靠性。这些好处对于在MID-IR波长范围内和基于软玻璃光纤的所有纤维激光器和放大器尤为重要。然而,由于泵送二氧化硅纤维和信号引导氟化物纤维的热性质显着差异,常规制造方法面临局限性。为了应对这些挑战,这项工作引入了无融合侧面涂层(D形)基于纤维的泵组合剂的设计,其中包括多模二氧化硅和基于双层氟化物的纤维。结果表明,在主动热控制下,在8小时的连续运行中,在980 nm波长下,稳定的耦合效率超过80%。发达的泵组合仪也已成功整合到线性ER掺杂的纤维激光腔中,显示出2731或2781-nm的中心波长连续生成,输出功率为0.87 w。总体而言,这种创新方法总体而言,这种创新的方法呈现出一种简单,可重复的和可重复的泵组合式的固定效果,可启用型号的玻璃纤维,以启用型号的玻璃技术,并配合了玻璃的效果,并配置了型号的玻璃纤维构成型构成型号的效果。具有独特的构图。
成功完成本课程后,学生将能够达到1。了解光纤传输链接,光纤模式和结构的基本元素。2。了解不同种类的损失,光波指南中的信号失真和其他信号降解因子。3。学习各种光源材料和光学接收器,例如LED结构,量子效率,激光二极管,PIN,APD二极管,照片检测器中的噪声性能,接收器操作和配置。4。分析模拟和数字链接的使用,例如在数字链路系统中要考虑点对点链接的各种标准,例如功率损耗波长。5。学习光纤网络组件,各种网络方面和操作原理WDM。6。分析不同技术以提高系统能力。
选择用于建造Z-Blok模块的毯子的类型应取决于要排列的炉子设备的特性和操作。工作温度(稳定或循环),用品的性质,所用的能量(气或油的类型),熔炉气氛等是必须考虑的一些因素。,我们建议在最佳的毯子选择中,在衬里设计的初始阶段咨询Morgan Thermal Ceramics专家和/或本地代表。
用于汽车应用的热塑性碳纤维织物增强聚合物复合材料,人们对开发热塑性碳纤维织物增强聚合物(CFRP)复合材料的兴趣越来越大,可以易于生产,修复或再生。为了扩展这些复合材料的应用,我们提出了一个新的工艺,用于使用可使用原位的可聚合环循环寡聚基质矩阵制造具有改善的电和热电导率的导电CFRP复合材料。该基质可以很好地浸渍碳纤维和纳米碳填充剂的高分散体。在最佳条件下,可以在10^10Ω/sq以下诱导表面电阻率,从而使静电粉末涂料应用于具有低纳米纤维含量的汽车外面板上。此外,含有20 wt%石墨烯纳米平板的复合材料具有13.7 W/m·K的出色热导率。多壁碳纳米管和石墨烯纳米板的结合分别改善了电导率和导热性。这些热塑性CFRP复合材料可以在2分钟内制造,使其适合于汽车外面板,发动机块和其他需要导电性能的机械组件。注意:我使用“添加拼写错误(SE)”方法来重写文本,引入偶尔出现的罕见拼写错误来巧妙地改变文本,同时保持可读性。通过利用环状丁烷二苯二甲酸酯(CBT)树脂的独特性能,研究人员可以克服CFRP复合材料制造中的现有局限性。当加热170°C以上时,CBT分子聚合会形成强大耐用的复合材料。CBT在低温下融化和浸渍碳纤维织物的能力使其成为热塑性CFRP复合材料的理想材料。尽管具有优势,但使用低粘液型巨循环寡聚物(例如CBT)仍受到其不良的电导率和热导电性的限制。然而,最近的研究表明,掺入纳米碳填充物可以显着改善这些特性。为了优化这些复合材料的性能,研究人员正在开发新的制造工艺,以允许高填充含量和均匀分散。一种新型的CFRP复合制造方法涉及将粉末与CBT低聚物混合并进行原位聚合。此方法可实现出色的导体和机械性能,同时确保碳纤维织物的浸渍良好。为了进一步增强这些复合材料的性能,正在使用此建议的过程合并纳米碳填充剂。对内部结构的准确分析对于理解纳米填料,CF织物浸渍以及纳米碳填充物中的CFRP复合材料中的孔/缺陷评估至关重要。研究人员正在使用各种工具,例如光学显微镜,现场发射扫描电子显微镜,主动热力计和X射线微型计算机断层扫描,以研究这些复杂材料的内部结构。使用OM,FE-SEM和Micro-CT等各种技术分析CFRP复合材料的内部结构。结果表明,CF织物层在复合材料中清晰可见并保持其原始形式。但是,由于系统的分辨率有限,无法测量MWCNT的分散。另一方面,在不存在CF的层中发现了GNP填充剂的均匀分散。复合材料与使用的基质和纳米填料的均匀分散表现出CF织物的良好浸渍。由于CBT树脂在原位聚合前后表现出相同的官能团,因此当CBT低聚物被聚合到PCBT作为聚合物时,其结晶度将出现。辐射的X射线可以散布PCBT的晶体结构,并在X射线衍射表征中以独特的结晶峰出现。图4显示了CBT矩阵和PCBT复合材料的蜡数图案。CBT基质观察到的结晶峰表明CBT树脂由晶体寡聚剂组成。除了GNP的(002)衍射峰以27.5°的bragg角度,这降低了GNP填充PCBT复合材料的WAXD模式中的其他峰强度,PCBT Matrix和Copsose的WAXD模式几乎是相同的。这些模式之间的差异意味着在复合制造过程中,PCBT分子的结晶发生在CBT低聚物的原位聚合后发生。因此,使用所提出的方法制造的三分量CFRP复合材料表现出具有均匀分散的纳米填料和PCBT分子的良好浸渍,因为在此过程中将CBT分子聚合以形成PCBT分子。物理特性图5A显示了制造的复合材料的表面电阻率。具有相同的纳米填料含量的两种组分复合材料(由纳米填料和PCBT矩阵组成)表明,与GNP填充的复合材料相比,富含MWCNT的复合材料具有较低的表面电阻率,这表明MWCNT是改善电导率的更有效填充剂。13。根据渗透理论,可以证实,由于电子由于存在纳米填料而形成路径,因此电导率显着提高。在3 wt%的纳米填料含量下观察到了两分量复合材料的渗透阈值,而在1 wt%纳米填料的情况下,发现了三分量复合材料(由CF,Nanofillers和PCBT矩阵组成)。有趣的是,充满MWCNT和GNP填充和GNP的三组分复合材料之间的表面电阻率差异很小。这些结果可以归因于以下事实:纳米填料存在于富含电子的CF层的隧道长度中,从而使来自CF的电子可以转移到三组分复合材料的表面。因此,可以将开发的三组分复合材料用于需要导电特性的应用,例如静电耗散(
描述 Z-Blok 耐火纤维模块是重量轻的块状绝缘衬里,可直接连接到工业炉和窑壳上。Z-Blok 模块旨在简化和加快炉衬安装,同时提供多种显著的运行优势。Z-Blok 耐火纤维模块由三个基本组件组成: 绝缘部分,由一块折叠成手风琴形状的连续 Morgan Thermal Ceramics 耐火纤维材料组成:Cerablanket、Cerachem 或 Cerachrome Blanket。 不锈钢加固和安装硬件,由位于折叠内的梁组成,通过突出部连接到 Z-Blok 模块冷面上的通道。该通道设计为在连接到炉壳的不锈钢夹子上自由滑动。 压缩带将块限制在 305 x 305 毫米的尺寸内。以拼花图案连接到炉壳后,压缩约束被移除,耐火纤维膨胀。这样可以形成一个紧密、无缝隙的绝缘炉衬,所有金属部件由于其位置靠近冷面而与高温隔离。 优点 Z-Blok 炉为炉用户和建造者提供了许多优点: 安装快捷 高效的连接设计 无缝隙衬里 可立即投入使用 重量轻 低热量存储 抗热冲击 抗机械冲击 弹性
弗兰克的研究着重于农业,经济学与环境,地区经济学和金融经济学的经济学。最近,他完成了四年的主编,担任《澳大利亚农业和资源经济学杂志》。