量子网络有望为许多破坏性应用提供基础架构,例如EOCIENT长距离量子通信和分布式量子计算1,2。这些网络的中心是使用光子通道之间在遥远节点之间分布纠缠的能力。最初开发用于量子传送3,4和Bell9s不平等的无漏洞测试5,6,最近也对电信FBR进行了纠缠分布,并回顾性7,8。然而,为了完全使用长距离量子网络链接的纠缠,必须知道它在纠缠状态衰变之前在节点上可用。在这里,我们证明了在FBRE链路上产生的两个独立捕获的单个rubidium原子之间的纠缠,长度高达33)km。为此,我们在建筑物400)中的两个节点中生成Atom3photon纠缠,并使用极化量子化的量子频率转换9。长FBR将光子引导到钟形测量设置,其中成功的光子投影测量预示了原子10的纠缠。我们的结果表明,纠缠分布在电信FBRE链接上的可行性有用,例如,对于独立于设备的量子键分布11313和量子中继器协议。提出的工作代表了实现大规模量子网络链接的重要步骤。
鉴于其广泛的应用,包括在纤维剪接,捆绑式风扇中/扇出,模式耦合,编写光栅和光纤绘制的情况下,必须准确了解多核纤维(MCF)的内部核心分布(MCFS)。然而,由于测量精度决定了产品的性能,因此可用于精确测量纤维核心分布的有限方法的广泛使用受到限制。在这项研究中,提出了基于贝塞尔束照明的侧视图和非破坏性方案,用于测量七核纤维的内部核心分布。贝塞尔束在散射介质中提供较大的焦距,并在具有空间变化的折射率变化的外轴介质中传播时表现出独特的图案。结果表明,在贝塞尔梁的情况下,较长的焦距和独特的模式会影响图像对比,这与典型的高斯梁不同。此外,使用数字相关方法证明了基于贝塞尔束的七纤维核心分布的高精度测量。一种深度学习方法用于将测量精度提高到0.2°,精度为96.8%。所提出的侧视图基于贝塞尔束的方法具有处理更复杂的MCF和光子晶体纤维的潜力。
从过去 20 年无线系统的发展来看,一个有限的标准开发组织 (SDO) 领导小组已经制定了一个规范且时间安排合理的世代规划,从 3G 到 4G,再到现在的 5G。无线行业从该计划中受益匪浅,因为所有运营商、供应商和其他利益相关者都保持一致,因此无线服务非常成功。相比之下,固定宽带接入的发展则由众多 SDO 和论坛的活动以及独立运营商的活动决定。这导致固定宽带技术有些分散,由于行业内相互冲突的动向,几个重要的系统被推迟了很多年,在一定程度上降低了固定接入网络相对于无线接入网络的前景。
摘要剑麻纤维和基于生物的环氧树脂的组合具有良好的潜力,可提供具有改进或同等机械性能的环保生物复合材料。然而,由于键在化学结构(极性)函数组中的电荷在原子上的不同分布引起的两种材料之间的较差相互作用需要通过各种技术对组成部分的一个表面进行修改。本文讨论了有关多种治疗方法的可用文献,以通过实现有利的润湿性,机械互锁以及通过化学键合的改善相互作用来改善剑麻纤维和热套环氧矩阵之间的粘附。表明,在NaOH溶液中洗涤纤维,然后冲洗和干燥是普遍的化学处理。通过NAOH处理,研究人员观察到了清洁纤维,这促进了环氧基质的更好粘附。偶联剂(例如硅烷处理)表现出对纤维吸收的抗性的提高。热处理通过增加纤维素的结晶度,从而影响纤维的形态。还观察到,纤维矩阵粘附的改善对复合材料的冲击强度有不利影响。
免责声明 本信息是根据美国政府机构资助的工作编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
铁路通过交通,速度和负载在这些年来大大增加,促使行业利益相关者和研究人员寻求一种替代的卧铺材料,该材料可以证明其具有较高的在职弯曲抵抗力并具有环境友好和耐用的能力。为了满足这些需求,并且由于环境问题,KENAF增强的聚酰胺已变得非常重要。但是,由于其在这方面的性能不可用,因此无法用作铁路轨道组件。在弥合此差距时,本文着重于制造和表征处理过的六种不同配方的KENAF纤维(TKF,10%加载间隔时为0-50%),用于铁路卧铺应用。结果表明,TKF的掺入影响了聚酰胺在吸水,负载能力和热稳定性方面的行为。
由全球联盟非洲项目提供的这一开放创新挑战正在支持联合利华肯尼亚寻找创新的方法来处理小米(和其他谷物),以生产方便,强化的消费产品。由于这种营养谷物的物理变异性,处理效率低下,并且在产生优选格式方面存在挑战。
提供转售(例如 Open Fiber IT、Cityfibre UK)。被动接入(非捆绑光纤)通常仅在需要时提供(例如国家援助)或由市政网络作为被动业务模式的一部分。 q 向价值链下游移动被视为许多光纤网络运营商的机会,而
抽象更新呼吁在许多高性能应用中用碳纤维增强塑料(CFRP)更换常规材料,这是导致当前有关加工中最低量润滑(MQL)策略的研究浪潮。由于它们比常规材料具有竞争优势,聚合物基质复合材料(PMC)现在吸引了研究人员的关注,尤其是在加工领域。尽管大多数制造业都需要更少的加工,但精确加工(例如铣削和钻井)需要更多的研究输入。为此,本评论文章评估了纳米流体制备的各个方面及其在CFRP中的应用。分析了有关纳米流体的最新科学报告,侧重于属性,预先处理和应用(包括各自的方法),为在该领域的未来研究中为不断增长的数据库做出了贡献。本综述文章表明,切割温度和切割力仍然是表面固定的关键决定因素,而工具磨损构成了加工科学家希望通过使用适当的
执行摘要 目前业界测量应变的惯例是使用电阻箔应变计。这些传感器安装起来很费时,每个传感器需要三根屏蔽线,当需要进行高密度应变测量时,这会给被测结构增加相当大的重量和复杂性。电子仪表也容易疲劳,安装在作战飞机上时需要经常校准。分布式光纤应变测量系统可以大大降低安装成本和复杂性,并解决与电子仪表相关的一些耐用性和性能问题。本报告详细介绍了传统电阻箔应变计和基于瑞利散射的商用光纤分布式应变测量系统的性能之间的实验比较。所给出的结果比较了两个系统之间的应变响应、空间分辨率和噪声水平,首先是在包含疲劳裂纹的试样上,其次是在由退役 F/A-18 中心筒组成的全尺寸疲劳试验件上,该试验件受到模拟作战谱载荷。在大多数区域,光学应变数据与使用箔应变计进行的测量结果相比效果良好,但是,该系统存在一些局限性,特别是在高应变梯度区域测量应变时。尽管存在这些局限性,但在许多情况下,与传统电阻箔应变计相比,瑞利散射仍有潜力以大幅降低每个传感点的成本提供详细的应变测量。