nvidia®Bluefield®网络平台(DPU或Supernic)软件是由Bluefield BSP(董事会支持软件包)构建的,该软件包括操作系统和DOCA框架。Bluefield BSP包括加载和设置软件组件的其他必需品。BSP将官方的Bluefield操作系统(Ubuntu Reference Linux发行版)加载到Bluefield。DOCA是用于开发应用程序和基础架构服务的软件框架和SDK。DOCA包括运行时库; ARM的DOCA运行时堆栈支持用于存储,网络和安全性的各种加速度。因此,客户可以在Bluefield软件环境中无缝运行任何基于Linux的应用程序。
欧洲CVDPV2分离株的测序鉴定出与Sabin 2疫苗菌株的43-50个核苷酸的VP1衣壳蛋白编码区的差异。总体而言,在所有欧洲分离株中都发现了这些核苷酸差异中的38个。它们具有13个核苷酸的常见差异,与最接近的NIE-ZAS-1分离株发生了变化,这些分离株先前在阿尔及利亚,几内亚和马里被检测到。在这些欧洲国家中检测到的病毒群体呈现出单个谱系(即它们表现出核苷酸变化的共同模式,这使得它们与彼此之间的关系更紧密,而不是与Nie-Zas-1出现中的任何其他非欧洲分离物更紧密相关);但是,集群中存在一系列遗传差异,同一国家不同地点的同时分离彼此之间表现出很大的差异(4)。
这项研究使用多组分晶格玻尔兹曼颜色模型模拟了乳液中乳化液化的动态演变,该模型整合了脉冲电场和流场。使用面积与圆形比定量分析分散相液滴的聚集程度。数值模拟的结果表明,在三种类型的脉冲电场下,稀释乳液的拆除行为:直流电场(DC)脉冲电场,单向三角脉冲电场和双向三角脉冲电场。发现表明在脉冲电场下稀释乳液中电泳和振荡合并发生。改进的双向三角脉冲电场相对于直流脉冲或单向三角脉冲电场的效率提高。此外,增强的双向三角脉冲电场有效地拆除了水中稀释的乳液,并防止在不同组件比率上高压下的油滴在高压下分解。
语言:英语作为外语(TOEFL),国际英语语言测试系统(雅思)或PTE学术的测试是所有申请人所要求的。最低分数:学术雅思:总体乐队得分为7.0,没有个人得分低于6.0;或基于纸张的TOEFL:600或基于Internet的100;或PTE学术:53
在两个空间维度中开发了非Fermi液体(NFL)的预测理论仍然是现代冷凝物理物理学的关键挑战。在真实材料的水平上,它可以洞悉诸如高-T_C超导性等紧迫问题,而从抽象的角度来看,它是对较低的2-D临界值的范式的范式,这是由于与有限密度的Fermions相互作用而引起的2-D关键性。功能性重新归一化组特别适合研究NFL,因为它可以处理其固有的强相互作用和非分析的算子[1,2] - 但是,由于准粒子图片的细分,人们对低能量现场理论的形式鲜为人知,而大多数理论方法的形式缺乏预测能力。我们试图通过使用已知的确切身份(例如由对称性的身份)来限制建模来解决此问题。具体而言,我们非扰动地研究了与2-D Fermi-surface相互作用的U(1)仪表的问题;早就知道,磁性矢量电势不会被颗粒孔连续体筛选,因此诱导了关键性[3,4]。我们首先展示了调节器与U(1)对称性的相互作用如何 - 特别是为了正确捕获Landau阻尼,我们需要一个软频率调节器来构成费米子,这破坏了仪表对称性并导致修改后的病房身份。这些身份虽然不及标准病房身份,但仍然提供耦合之间的确切关系并限制流量。[1] S. A. Maier和P. Strack,物理。修订版mod。物理。reizer,物理。我们讨论了该模型托管的NFL固定点,并演示了修改后的病房身份的合并如何影响其特性。我们对低能量物理诱导的UV-IR混合进行了一些评论,并通过规格对称性诱导的uv-ir混合,以及我们的结果对非Fermi液体的预测建模的含义。b 93,165114(2016)[2]84,299(2012)[3] M. Yu。 修订版 b 40,11571(1989)[4] S. Chakravarty,R。E。Norton和O. F.Syljuåsen,物理学。 修订版 Lett。 74,1423(1995)84,299(2012)[3] M. Yu。修订版b 40,11571(1989)[4] S. Chakravarty,R。E。Norton和O. F.Syljuåsen,物理学。修订版Lett。 74,1423(1995)Lett。74,1423(1995)
在当今快节奏的世界中,各种系统中自动化和效率的需求已变得至关重要。这样一个领域是出勤管理,该领域传统上依靠手动或基于卡的方法,这两者通常都耗时且容易出现错误。这些方法可能导致不准确,管理不善或操纵出勤记录。此外,诸如代理出勤率(其他人代表他人的出勤率)之类的问题进一步使过程变得复杂。随着AI和计算机视觉技术的兴起,这些问题现在可以通过自动化和安全的解决方案有效地解决。基于AI的出勤系统,由面部识别技术提供支持,为这些问题提供了更有效,准确和防篡改的解决方案,从而确保了出勤跟踪的透明度和可靠性。该项目旨在开发这样的系统,以利用面部识别来准确识别个人并实时记录其出勤率,从而降低与传统方法相关的风险。
在海上环境中,重力和磁场的准确建模对于检测和表征水下物体至关重要,范围从低到高磁目标,例如未爆炸的军械(UXO),沉船和地质特征。我们使用COMSOL多物理学开发了一个沙盒环境,该环境允许对复杂的地球物理传感进行精确的创造和操纵。此环境可以详细模拟融合各种目标属性和环境条件的潜在字段,以生成用于ML训练的合成数据集。
本课程进一步建立在自然的量子力学描述中,如量子力学1和2中的早期所研究。重点是量化具有多个自由度的系统或连续限制的现场理论。由此产生的量子场理论描述了一种普遍的结构,该结构在许多情况下出现,其中连续描述适当。主要用作基本粒子物理语言的主要用途,也是量子重力模型的基础(例如,字符串理论),量子场理论也与描述固态物理学中的关键现象有关。用量子电动力学(QED)作为主要例子说明了这些概念。重点是理解物理概念及其与数学模型的关系。
摘要:在这项工作中,开发了用于水中的GD 3+离子检测的电解石墨烯场效应晶体管。通过在聚酰亚胺的光载体上制造了晶体管的源和排水电极,而石墨烯通道则是通过用喷墨打印氧化石墨烯墨水墨水来获得的,随后将氧化石墨烯墨水还原以减少氧化石墨烯。GD 3+选择性配体DOTA由炔烃连接器功能化,以通过在金电极上的Chemistry将其移植而不会失去其对GD 3+的影响。全面描述了合成途径,配体,接头和功能化表面的特征是电化学分析和光谱。AS官能化电极用作石墨烯晶体管中的栅极,因此可以调节源量电流作为其电势的函数,该电源本身是由在门表面上捕获的GD 3+浓度调节的。即使在包含其他潜在干扰离子的样品中,获得的传感器也能够量化GD 3+,例如Ni 2+,Ca 2+,Na+和3+。量化范围从1 pm到10 mm,对于三价离子,灵敏度为20 mV dec -1。这为医院或工业废水中的GD 3+定量铺平了道路。