飞机的直接升力控制在航空工业中已经存在了几十年,但主要用于具有专用直接升力控制面的商用飞机。本论文的重点是研究直接升力控制是否适用于没有专用控制面的战斗机,例如萨博 JAS 39 Gripen。建模系统是一种本质上不稳定的飞机,其空气动力学和有限的控制面偏转和偏转率都包含非线性。飞机的动力学围绕代表着陆场景的飞行情况线性化。然后应用直接升力控制,以提供从飞行员操纵杆输入到飞行路径角变化的更直接关系,同时还保持俯仰姿态。选择了两种不同的控制策略,即线性二次控制和模型预测控制。由于战斗机是具有快速动态的系统,因此限制计算时间非常重要。这种限制促使使用专门的方法来加速模型预测控制器的优化。在萨博提供的非线性模拟环境中进行的模拟结果以及在高保真飞行模拟装置上与飞行员进行的测试证明,直接升力控制对于所研究的战斗机是可行的。在控制飞行路径角时观察到足够的控制权限和性能。两种开发的控制器都有各自的优势,哪种策略最合适取决于用户的优先级。着陆期间飞行员的工作量以及接地时的精度被认为与传统控制类似。
摘要 团队合作的执行因领域和任务的不同而有很大差异。尽管团队及其运作方式存在相当大的多样性,但研究人员倾向于追求统一的理论和模型,而不论其领域如何。然而,我们认为有必要将理论模型翻译和改编到每个特定领域。为此,对战斗机飞行员进行了案例研究,并调查了在这种专业且具有挑战性的环境中如何进行团队合作,特别关注这些团队对技术的依赖。使用文献中有效团队合作的通用理论模型描述和分析了战斗机飞行员之间的协作。结果表明,需要特定领域的应用和修改,以便模型能够捕捉战斗机飞行员的团队合作。这项研究加深了对飞行员团队工作条件的了解,并为战术支持系统如何增强该领域的团队合作提供了设计启示。
• 遵守所有适用的联邦、州和地方环境法律、法规、规则、标准、行政命令、国防部和空军指导文件 • 积极主动地管理自然、人造和文化资源;消除、减少和/或管理环境因素和影响 • 实施、维护并持续改进环境管理系统
作战适用性 • 自主物流信息系统 (ALIS) - 该项目在 2018 年初完成了 ALIS 2.0.2.4 的部署,并专注于测试该软件的下一个迭代版本 3.0.1。 - 开发并测试了另外两个版本的 ALIS 3.0.1 软件 - 版本 3.0.1.1 和 3.0.1.2 - 以解决交付部署单位之前的缺陷。 • 网络安全作战测试 - 在 2018 年度,JOTT 评估了 ALIS 版本 3.0、F-35 训练系统和核动力航空母舰上的 ALIS 到舰载网络接口。 - 2018 年的网络安全测试表明,早期测试期间发现的一些漏洞仍未得到补救。 - 计划在 IOT&E 期间对飞行器进行有限的网络安全测试;还需要进行更多测试。 • 可用性、可靠性和可维护性——机队飞机的可用性没有改善趋势——整个机队的平均可用性低于 60% 的项目目标值,也远低于有效进行 IOT&E 所需的 80% 的计划值。——过去 3 年来,机队可用性的趋势一直持平;该计划的可靠性改进举措仍然没有转化为可用性的提高。—— JSF 作战要求文件中定义的可靠性和可维护性指标没有达到成熟期达到要求所需的中期目标。
6 实施 35 6.1 线性 MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
发动机更换后的飞行?发动机冷检是否足以获得飞行许可?(r) 是否有任何推力检查算法可用于在松开刹车前验证驾驶舱内的最大再热推力?在合格的发动机使用寿命结束时,推力是否会出现衰减?如果有,请说明。(s) 描述飞机上提供的喷气燃料启动器/启动马达。除了在地面上自主启动发动机外,它还涵盖哪些功能?它可以在地面和飞行中提供电气、液压和气动服务吗?其连续运行的最大持续时间额定值是多少?它可以在空中协助发动机启动吗?指定发动机启动(由启动器辅助)包络线。(t) 飞机发动机是否符合 Mil-E-5007E/任何其他军用标准?请说明标准。
比利时政府已请求购买三十四 (34) 架 F-35 联合攻击战斗机常规起降 (CTOL) 飞机和三十八 (38) 台普惠 F-135 发动机(34 台已安装,4 台备用)。还包括电子战系统;指挥、控制、通信、计算机和情报/通信、导航和识别 (C4I/CNI);自主物流全球支持系统 (ALGS);自主物流信息系统 (ALIS);全任务训练器;武器使用能力和其他子系统、特性和能力;F-35 独特的红外信号弹;重新编程中心;F-35 基于性能的物流;软件开发/集成;飞机渡轮和加油机支持;支持设备;工具和测试设备;通信设备;备件和维修零件;人员培训和培训设备;出版物和技术文件;美国政府和承包商工程和物流人员服务;以及其他相关的后勤和项目支持要素。估计总案值 65.3 亿美元。这项拟议的销售将有助于改善盟国和伙伴国的安全,从而促进美国的外交政策和国家安全,而该国一直是、并且将继续是西欧政治和经济稳定的重要力量。这项拟议的 F-35 销售将为比利时提供可靠的防御能力,以阻止该地区的侵略并确保与美国军队的互操作性。拟议的销售将增加比利时的作战飞机库存,并增强其空对空和空对地自卫能力。比利时将毫不费力地将这些飞机纳入其武装部队。拟议的设备和支持销售不会改变该地区的基本军事平衡。总承包商将是位于德克萨斯州沃斯堡的洛克希德马丁航空公司和位于康涅狄格州东哈特福德的普惠军用发动机公司。此提案是在竞争中提出的。如果提案被接受,预计将需要补偿协议。所有补偿均在买方和承包商之间的谈判中定义。实施此拟议销售将需要美国政府和承包商代表多次前往比利时进行技术审查/支持、项目管理和培训,整个生命周期内
由于测试资源不足(例如,测试飞机、高保真仪器、软件和任务数据重新编程实验室线)以及提议的快速时间表中新内容过多而无法执行。在撰写本报告时,该计划的 C2D2 采购策略以及开发和交付时间表正在审查中。此外,6 个月的软件发布周期与支持整个 JSF 系统(即 ALIS、任务数据、训练模拟器、飞机改装)所需的其他能力增量不一致,而 F-35、F-22 和 F/A-18 历来需要更长的时间。该计划应重新规划 C2D2,以获得更切合实际的时间表和内容,其中包括足够的测试基础设施(实验室、飞机和时间)和符合其他部署要求的修改。
由于测试资源不足(例如,测试飞机、高保真仪器、软件和任务数据重新编程实验室线)以及提议的快速时间表中新内容过多而无法执行。在本报告撰写时,该计划的 C2D2 采购策略以及开发和交付时间表正在审查中。此外,6 个月的软件发布周期与支持整个 JSF 系统(即 ALIS、任务数据、训练模拟器、飞机改装)所需的其他能力增量不一致,而 F-35、F-22 和 F/A-18 历来需要更长的时间。该计划应重新规划 C2D2,以获得更切合实际的时间表和内容,其中包括足够的测试基础设施(实验室、飞机和时间)和符合其他部署要求的修改。
实现这一目标的一种方法是所谓的预测调节,该方法已成功应用于流程工业等领域。预测控制在实践中是指计算机试图预测(预测)飞机未来的运动,并据此找到最佳的控制命令,从而在不超出任何限制的情况下,最大程度地遵循飞行员的意愿。这是通过制定数学优化问题来完成的,您希望最小化飞行员的愿望与飞机未来行为的预测之间的差异。此优化问题的次要条件是飞机的动力学以及系统中可能存在的所有限制。一旦有新的测量数据可用,飞机的控制计算机就会解决这个优化问题,即每秒多次。这些优化问题很复杂,需要大量的计算能力。因此,一个巨大的挑战是让这些变得更简单并且更适合航空业。