测试和评估总体规划 (TEMP) 和 Block 3F 联合测试计划 (JTP) 中的累积测试内容,该计划在签署这些文件时完全同意这些内容是必需的。该计划计划“隔离”计划由测试中心飞行的 JTP 累积测试点,而是直接跳到最近设计的复杂毕业级任务效能风险降低测试点,以快速抽样完整的 Block 3F 性能。然后,如果任何 Block 3F 功能在复杂测试点期间似乎正常工作,该计划将删除适用于这些功能的底层累积测试点并将其指定为“不再需要”。但是,该计划必须确保替代数据适用,并在删除任何底层累积测试点之前提供足够的统计信心,证明测试点目标已经得到满足。虽然这种方法可以提供对 Block 3F 功能的快速抽样评估,但存在很大的风险。多个最新的飞行测试软件版本可能会阻止程序使用旧版本软件的数据来计算基线测试点删除,因为它可能不再代表 Block 3F。西部试验场的可用性有限且成本高昂,再加上在该靶场完成的测试任务的重飞率很高,使得程序难以有效地进行这种测试。最后,最复杂的能力
持续到 2015 年。除了这项合同之外,ATK 还为 F-35 制造其他几种复合材料结构,包括七片式上翼蒙皮、下翼蒙皮、发动机舱蒙皮、进气道和上翼带,采用自动纤维铺放和手工铺放技术。2011 年 9 月,洛克希德·马丁航空公司授予 ATK 生产单段全复合材料上翼蒙皮的合同。根据初始系统开发和演示合同,到 2006 年 10 月将为 22 套船舶提供零件。在低速率初始生产阶段的后续潜力包括到 2015 年的另外 674 套船舶。ATK 复合材料公司负责新型战斗机所有三种型号上翼蒙皮的工具设计和制造,产品基于纤维铺放制造工艺。 ATK 复合材料公司此前曾为洛克希德马丁公司提供过两个 JSF 演示项目的支持 - 对于概念演示飞机,ATK 提供了两套纤维放置进气道和上机翼蒙皮的代表性部分,以模拟 STOVL 和 CV 变体。
道格拉斯·德马约上校是阿拉巴马州空军国民警卫队丹尼利场第 187 战斗机联队的指挥官。他负责指挥 1,400 名人员、三个地理上分散的单位和 22 架 F-16 飞机。他于 1991 年从美国空军学院获得任命,在德克萨斯州谢泼德空军基地参加了欧洲-北约联合喷气式飞机飞行员培训,并在中队、大队和联队担任过 F-16 教练飞行员和飞行考官等各种职务。德马约上校指挥南卡罗来纳州肖空军基地第 55 战斗机中队,部署到伊拉克巴拉德空军基地,后来指挥位于意大利波焦雷纳蒂科的北约可部署空中作战中心。他毕业于美国陆军指挥参谋学院和高级军事研究学院(位于堪萨斯州莱文沃思堡)和艾森豪威尔国家安全学院(位于华盛顿特区麦克奈尔堡),获得战区作战和长期战略硕士学位。作为勒梅作战条令中心副司令,他是空军空中优势、多域指挥与控制以及电子战/电磁频谱企业能力协作团队参谋长创始成员。他是空军部联合全域作战条令的合著者,撰写了《反太空条令》,并协助太空部队制定条令和概念。德马约上校是一名指挥飞行员,拥有超过 2,800 小时的 F-16 飞行经验,曾五次参加西南亚战斗部署。
这是一部关于一位迷人军官的传记,也是所有飞行员的必读书籍。它将吸引各种各样的兴趣。机组人员和未来的战斗机飞行员将喜欢阅读极具竞争力的“40 秒博伊德”的书籍,他在内利斯战斗机武器学校保持了在 40 秒内击败所有对手的惊人记录。具有技术偏见的读者会喜欢博伊德,他是一名研究飞行员,开发并记录了第一本美国空军战斗机战术手册,然后是空中机动理论(违背了他的指挥系统的明确意愿),并将他的想法提交给美国空军规划人员,使 F-16 等战斗机获得空中优势。那些研究领导力的人会发现博伊德是一名狂热的特立独行者,他要求并得到了他精心挑选的助手的坚定忠诚和承诺。最后,天马行空的思想家们会欣赏博伊德这位富有远见的人,他研究战略和战争,提出了一种制胜理论,这种理论帮助改变了我们对空中力量使用的看法,推动了美国海军陆战队的机动战理论,并且仍然在推进商业大师们的竞争理念。
摘要:本文考虑了第五代飞机技术特性对指挥和控制(C2)可能产生的一些影响。可能需要委托决策权以充分利用第五代战斗机的隐身和态势感知能力。我们建议,在将决策权委托给飞行员时,例如目标交战权,指挥官需要权衡共享和不共享信息的成本和收益。委托的好处以及暂时放弃信息共享,可能会以战略控制权减少为代价。委托可能涉及暂时放弃与飞行员沟通的机会。在这种情况下,任务可能在战术上得到更好、更快的解决。因此,在做出授权决策时,指挥官可以从正式框架中受益,该框架系统地检查影响授权决策的已知因素,并清楚地描述与战斗机飞行员的沟通过程。这可以缩短决策时间,同时减少因忽略决策中的关键因素而产生的偏见。基于这样的框架,我们讨论了对空军和联合 C2 的影响。
摘要 本文详细介绍了为确定下一代战斗机对高速数据总线的需求而进行的研究,对各种高速数据总线技术进行了比较,并对光纤通道航空电子环境 (FC-AE) 数据总线协议的选择进行了说明。基于这项研究,提出了采用 FC-AE 网络的航空电子架构以满足下一代战斗机的要求。这项研究的必要性在于当前基于 MIL STD 1553B 进行数据通信的联合航空电子架构和基于 STANAG 3350 的模拟视频分发网络的缺点。MIL STD -1553B 的最大速度限制为 1 Mbit/秒,STANAG 3350 的最大视频分辨率为 760 x 575 像素。当前的航空电子架构使用多种协议来实现数据、视频和控制功能。可以使用单个冗余商用现货网络来代替使用多种网络协议,这可以节省空间、成本和重量,同时增加网络容量。重量对于航空电子设备来说尤其重要,每架战斗机容纳其航空电子设备和互连系统的空间都有限。在下一代战斗机中,新功能需求的数量有所增加,需要在重量预算约束内实现。建议的解决方案是基于 FC-AE 网络的先进集成航空电子设备和统一互连系统。
在向他领导了两年的团队发表讲话时,大卫·B·莱昂斯上校赞扬了第 388 战斗机联队的男女官兵们的职业道德和“团队精神”,然后感谢他们“有足够的勇气响应国家的号召”。他说,第 388 联队“由美国最优秀的人才组成”。他说:“我永远不会忘记或认为你们每天为国家所做的一切是理所当然的。”“感谢你们成为伟大的美国飞行员,成为我们美国空军中最伟大的战斗机联队。”莱昂斯将离开希尔,前往亚利桑那州戴维斯-蒙森空军基地担任第 12 空军副指挥官。6 月 23 日星期五,在希尔举行的正式换届仪式上,莱昂斯将代表联队的旗帜交给了马克·凯利中将,后者随后将其交给了接任指挥官的李·克洛斯上校。克洛斯来自国防高级研究计划局,自 2015 年 6 月以来一直担任该局局长的空军作战联络员。
执行摘要 测试规划、活动和评估 • 该计划专注于完成 Block 2B 的开发和测试,以便提供舰队发布,使海军陆战队的 F-35B 联合攻击战斗机 (JSF) 能够宣布初始作战能力 (IOC),同时将开发和飞行测试资源过渡到 Block 3i 和 Block 3F。- 该计划于 2015 年 5 月终止了 Block 2B 开发飞行测试,交付的 Block 2B 能力存在缺陷且作战能力有限。海军陆战队于 2015 年 7 月底宣布 IOC。但是,如果用于战斗,Block 2B F-35 将需要指挥和控制部门的支持,以避免威胁、协助目标获取和控制武器使用有限的武器运载能力(即两枚炸弹、两枚空对空导弹)。Block 2B 在融合、电子战和武器使用方面的缺陷导致威胁显示不明确、应对威胁的能力有限,并且需要机外来源提供精确攻击的精确坐标。由于 Block 2B F-35 飞机仅限于两枚空对空导弹,因此如果遭到敌方战斗机的攻击,它们将需要其他支持。该计划将缺陷和武器投放精度 (WDA) 测试事件从 Block 2B 推迟到 Block 3i 和 Block 3F,这是必要的举措,以便将测试企业过渡到支持 Block 3i 飞行测试和 Block 3F 开发,这两项工作的开始时间都晚于该计划的综合主计划 (IMS) 中的计划。- Block 3i 开发飞行测试于 2015 年 3 月第三次重启,此前两次测试分别于 2014 年 5 月和 9 月启动。根据 IMS 的反映,Block 3i 开发飞行测试于 10 月完成,比 2012 年重组后计划的时间晚了 8 个月。Block 3i 开始将不成熟的 Block 2B 软件和功能重新托管到带有新处理器的航空电子组件中。尽管该计划最初打算 Block 3i 不会引入新功能,也不会继承早期模块的技术问题,但事实就是如此。空军坚持要求修复从 Block 2B 继承的五个最严重缺陷,这是在空军 IOC 飞机中使用最终 Block 3i 功能的先决条件;空军 IOC 目前计划于 2016 年 8 月(目标)或 2016 年 12 月(阈值)进行。然而,由于继承的缺陷和新的航空电子设备稳定性问题,Block 3i 在开发测试 (DT) 期间遇到了困难。基于这些 Block 3i 性能问题,空军简报称 Block 3i 任务能力面临无法实现的风险
由于该系统仍处于开发阶段,因此从此次评估中我们几乎无法了解到 F-35 在作战行动中的操作和维护情况。 • 该项目完成了计划中的八个系统级弹道测试系列中的两个。 - 第一个系列证实了飞行关键系统的内置冗余和重新配置能力。第二个系列表明弹道损伤不会对 F-35B 推进系统性能造成可测量的下降,而且飞行员无法察觉到这种损伤。正在进行的分析将评估这些测试是否强调了 F-35 弹道损伤特有的脆弱性(例如,270 伏、28 伏和信号线之间的干扰或电弧和/或升力风扇叶片部分的损坏)。 - 第一个系列测试证实了聚α烯烃 (PAO) 冷却剂和燃油液压系统的火灾脆弱性。作为减轻重量的一部分,相关防护系统于 2008 年从飞机上拆除。脆弱区域计算工具分析显示,拆除这些系统会导致飞机脆弱性增加 25%。F-35 项目办公室可能会根据更详细的成本效益评估考虑重新安装 PAO 截止阀功能。F-35 设计不会重新考虑燃油液压系统保护。• 该项目的最新脆弱性评估显示,拆除燃油液压保险丝、PAO 截止阀
如今,复杂系统的设计遵循基于能力的方法。手头的问题是:给定一组需求(例如性能、成本等),哪个系统最能满足这些需求?当这个逆问题得到解决后,人们可以根据整体能力选择系统及其架构。在这种方法中,有必要在代表系统预期性能的需求和设计参数之间建立联系。这种参数化方法允许同时融合需求和系统设计。项目开始时做出的决策对项目的成功起着重要作用。为决策者提供帮助是一个真正的挑战,使他们能够更好地管理多个且往往相互冲突的标准,以及复杂系统设计中决策始终存在的不确定性。在项目的早期阶段,有必要了解需求如何相互作用、它们对设计有何影响、满足这些需求的设计选项是什么以及它们相关的成功概率。