摘要。在本文中,我们提出了一个从部分体积(PV)图中合成3D脑T1加权(T1-W)MRI图像的框架,目的是生成具有更多积分率组织边界的合成MRI体积。合成的MRI需要扩大和丰富用于培训脑部分割和相关模型的非常有限的数据集。与当前的最新方法相比,我们的框架利用PV-MAP属性,以指导生成的对抗网络(GAN)来生成更准确和更现实的合成MRI体积。我们证明了在PV-MAP上而不是二进制映射的条件,导致合成MRIS中的精确组织边界更加准确。此外,我们的结果表明,在合成MRI体积中,深灰质区域的表示有所改善。最后,我们表明,在合成图像中反映了引入PV映射的细胞变化,同时保留了准确的组织边界,从而在新的合成MRI体积的数据合成过程中可以更好地控制。
CPF 的 Filip Jansåker 被公认为斯科纳地区最成功的年轻临床研究员。该奖项由斯科纳大学医院和医学院颁发,以表彰他在感染和公共疾病研究方面的工作。Jansåker 是马尔默 Granen 医疗中心的住院医生,也是 CPF 的副教授。颁奖评审团表示,Jansåker“在职业生涯早期就令人印象深刻地创建了一项以临床为重点的研究,包括试验发起的随机研究,这些研究更新了我们在初级保健中治疗患者的方式。”Jansåker 于 2020 年在哥本哈根大学获得博士学位,论文主题是尿路感染。他的研究表明,三天疗程的 Pivmecillinam(一种青霉素)对膀胱炎的效果与五天疗程一样好。由于他的发现,丹麦的治疗建议发生了变化。从那时起,Jansåker 继续研究泌尿道感染以及其他感染和公共疾病。此外,他还研究了感染与宫颈癌之间的联系,以及社会因素如何影响公共疾病的风险。
大多数当前的CSP植物都将硝酸盐盐混合物作为热存储介质。这些盐被用作纯粹明智的能量存储,在充电/放电周期期间,液态盐在冷水和冷罐之间抽水。由于硝酸盐降解为亚硝酸盐时发生的腐蚀引起的,这些系统限于大约560°C [2]。下一代CSP计划在更高的温度下运行,因此需要在650°C或更多的温度下运行的热量储能介质[1]。由于硝酸盐将在这些温度下分解,因此正在研究其他类型的盐,例如氟化物,氯化物和碳酸盐,以用于热量储能应用[3-7]。熔融氟化物盐已将大量研究重点视为传热液,并且是熔融盐反应器中核燃料的载体[8]。熔融氯化盐最近已经从CSP工业中获得了极大的兴趣,这主要是由于美国领导的GEN3 CSP项目,该项目旨在使用氯化物三元盐作为明智的热量储能培养基和高达800°C的温度下的热传递流体[9-12]。
小鼠和同变物对照(TNF +/ +)的小鼠用于研究内核和转基因T细胞受体(TCRM)模型中的心肌炎。TNF + / - 和TNF - / - 小鼠用α-肌球蛋白重链肽(αMYHC)免疫的小鼠表现出心肌炎的发病率降低,但易感动物在心脏中发生了广泛的炎症。在TCRM模型中,由于心肌病和心脏纤维化,TNF-α的产生有缺陷与死亡率增加有关。我们可以确认TNF-α以及抗原激活的心脏反应效应子CD4 + T(T EFF)细胞有效地激活心脏微血管内皮细胞(CMVEC)的粘附特性。我们的数据表明,除T EFF细胞外,内皮产生的TNF-α还促进了叶核细胞粘附于活化的CMVEC。对两种心肌炎模型的CD4 + T淋巴细胞的分析均显示出心脏,脾和TNF + / - 和TNF - / - 小鼠的血液中T EFF细胞的分数明显增加。的确,抗原激活的TNF - / - T EFF细胞显示长期生存率延长,TNF-α细胞因子诱导的心脏反应性t eff的细胞死亡。
认证人:Gustav Wibell-Kähr Filip Nilsson Ek __________________ _________________
361- 在严酷风洞环境中高转速下具有挑战性的高端数据采集系统 Michiel Bardet、Pim van Zutphen、Filip Fontaine、Johan de Goede 和
András Pál 1, Masanori Ohno 2, László Mészáros 1, Norbert Werner 3, Jakub ˇ Rípa 3, Balázs Csák 1, Marianna Dafˇcíková 3, Marcel Frajt 4, Yasushi Fukazawa 2, Peter Hanák 5, Ján Hudec 4, Nikola Husáriková 3, Martin Kolács 3, Martin Koleda 7, Robert Laszlo 7, Pavol Lipovský 5, Tsunefumi Mizuno 2, Filip Münz 3, Kazuhiro Nakazawa 8, Maksim Rezenov 4, Miroslav Šmelko 9, Hirromitsu Takahashi 2, Martin Topinka Jean-Paul Breuer 3,TamásBozóki11,Gergely Dale 12,Teruaki Enoto 13,Zsolt Frei 14,Gergely Fresh 14,GáborGalgóczi14.15 14.15,Filip Hroch 3,Yuto Ichinohe 16,Yuto Ichinohe 16,Kornélkapás17,18,15,15,15,15,15,15,15,15,15,15 你好。 Poon 2,AlešPovalaEvenc 6,Johnakátsy14.15,Kento Torigoe 2,Nagomi Uchida 20和Yuusuke Uchida 21András Pál 1, Masanori Ohno 2, László Mészáros 1, Norbert Werner 3, Jakub ˇ Rípa 3, Balázs Csák 1, Marianna Dafˇcíková 3, Marcel Frajt 4, Yasushi Fukazawa 2, Peter Hanák 5, Ján Hudec 4, Nikola Husáriková 3, Martin Kolács 3, Martin Koleda 7, Robert Laszlo 7, Pavol Lipovský 5, Tsunefumi Mizuno 2, Filip Münz 3, Kazuhiro Nakazawa 8, Maksim Rezenov 4, Miroslav Šmelko 9, Hirromitsu Takahashi 2, Martin Topinka Jean-Paul Breuer 3,TamásBozóki11,Gergely Dale 12,Teruaki Enoto 13,Zsolt Frei 14,Gergely Fresh 14,GáborGalgóczi14.15 14.15,Filip Hroch 3,Yuto Ichinohe 16,Yuto Ichinohe 16,Kornélkapás17,18,15,15,15,15,15,15,15,15,15,15 你好。 Poon 2,AlešPovalaEvenc 6,Johnakátsy14.15,Kento Torigoe 2,Nagomi Uchida 20和Yuusuke Uchida 21
P 12 Theoretical and Experimental Insights Into Stimuli Responses of Two Isostructural Mofs Differing by a Single Atom ............................................................................................................................................................................................................................... Mazur, Bogdan Kuchta, Filip Formalik, Volodymyr Bon, Stefan Kaskel,Kornel Roztocki,Agnieszka Janiak
PAWEŁ NOWAKOWSKI (IOA) ADAM OKNIŃSKI (IOA) ANNA KASZTANKIEWICZ (IOA) BŁAŻEJ MARCINIAK (IOA) DAMIAN KANIEWSKI (IOA) FILIP CZUBACZYŃSKI (IOA) JACEK MUSIAŁ (IOA) MICHAŁ RANACHOWSKI (IOA) WITOLD WĄSOWSKI (IOA) MACIEJ BORYS (ASTRONIKA)