摘要我们报告了一种新型材料的超导性能:鼻红细胞膜。从X≈3.8探索了Re X Lu Binary的不同组成,以接近纯Re化学计量。根据电子色散光谱结果,获得了x≈10.5的最高临界温度,最高为tc≈7k。取决于沉积条件,可获得多晶或无定形膜,这两种膜对于实际使用而言都很有趣。使用放牧X射线衍射测定法鉴定出多晶相的晶体结构为非中心对称超导体。超导特性在电阻和磁性上都被表征。磁倍率和AC/DC敏感性测量值使我们能够确定这些膜的H C 1和H C 2,以及估计相干长度ξ(0)和磁穿透深度λL(0)。我们还提供有关这些膜表面形态的信息。在该材料中的超导性证明证明了Lu在周期元素表的6周期中扮演3组过渡金属的角色的观点。然后,类似于re – nb,re – ti,re – hf和re – zr,人们可以期望结晶re – lu也打破了时间反转的对称性。如果未来的实验证明了这一点,结合了非中心对称特征,这些膜可用于形成非偏置电流设备,例如超导二极管,而无需外部磁场。
Zydus Healthcare SA(PTY)Ltd Tramazac SR 100/150/200氢化型曲马多(100/150/200 mg)薄膜涂层片< / div>
抽象的人类活动会产生过多的营养,从而导致有害的藻华(HAB S),在全球范围内的数量和严重程度都在增加,从而造成了重大的生态问题和大量的经济损失。具有易于操作的成本效益的聚合膜代表了各种水生系统中传统Hab s Mitiga方法的有前途且可持续的替代品。在这项研究中,使用聚合物膜,特异性的聚合物(PCL/PMMA)(PCL/PMMA)和与聚乙烯乙二醇(PCL/PEG)的聚二苯二甲酮用于藻类缓解症。据我们所知,没有先前的研究探讨了PCL/PMMA和PCL/PEG复合聚合物膜在缓解藻类方面的应用。 使用溶剂铸造方法制备了这些薄膜。 成功制备的膜比为1:0.2、1:0.4和1:0.6。 ATR-FTIR分析通过检测与每个纯聚合物相对应的特征功能组峰来成功制备PCL/PMMA和PCL/PEG,这表明复合材料中聚合物之间非共价键相互作用的可能性。 热分析(TGA)表明所有膜比的热稳定性提高。 缓解量的藻类研究形成了光学显微镜分析,显示复合材料中存在藻类细胞。 除了这些COM POSITE聚合物膜的比率较高,PCL/PMMA的表现优于PCL/PEG,的去除效率提高了。 值得注意的是,1:0.4 PCL/PMMA膜表现出高效的藻类去除,微藻细胞之间的相互作用和在较短的时间内观察到的膜之间的相互作用。据我们所知,没有先前的研究探讨了PCL/PMMA和PCL/PEG复合聚合物膜在缓解藻类方面的应用。使用溶剂铸造方法制备了这些薄膜。成功制备的膜比为1:0.2、1:0.4和1:0.6。ATR-FTIR分析通过检测与每个纯聚合物相对应的特征功能组峰来成功制备PCL/PMMA和PCL/PEG,这表明复合材料中聚合物之间非共价键相互作用的可能性。热分析(TGA)表明所有膜比的热稳定性提高。缓解量的藻类研究形成了光学显微镜分析,显示复合材料中存在藻类细胞。除了这些COM POSITE聚合物膜的比率较高,PCL/PMMA的表现优于PCL/PEG,的去除效率提高了。 值得注意的是,1:0.4 PCL/PMMA膜表现出高效的藻类去除,微藻细胞之间的相互作用和在较短的时间内观察到的膜之间的相互作用。的去除效率提高了。值得注意的是,1:0.4 PCL/PMMA膜表现出高效的藻类去除,微藻细胞之间的相互作用和在较短的时间内观察到的膜之间的相互作用。与其他膜相比,这部电影在15分钟内达到了最高的去除效率10.6%。在这项预先研究中,复合聚合物膜显示出良好的潜力和有前途的缓解藻类相关的候选者。
Figure 1 Work breakdown Structure (WBS) for the Biodegradable Mulch Films (BDM) development ............................................................................................................................... 2 Figure 2: (a) Representation of benefits and pollution problems associated with mulches from conventional plastics; (b)对2025年从非洲进入海洋的陆基塑料废物的预测-Jambeck等人,2018年,估计估计到2025年,塑料的10.5 mton将进入海洋,其中尼日利亚是最大的污染者)............................................................................................................................................................................................................................................................................................................................................................................................................................................. Agricultural Mulch Films Volume (%), Geography, Africa, 2021 estimates ................ 6 Figure 5: Material types currently used in the agricultural films in Africa ................................... 7 Figure 6: Vale chains of mulch films .......................................................................................... 9 Figure 7: Value chain point indicating GHG reduction potential of BDMs over conventional plastic mulches ......................................................................................................................... 11 Figure 8: Factors Limiting BDM market in Nigeria ................................................................... 13 Figure 9: Market share of the major players in Nigeria ............................................................ 15 Figure 10: Market Segments, crop type under mulches.......................................................... 15 Figure 11: Nigerian starch Market Size in thousand metric ton, 2016-2026.[source: Mordor Intelligence Custom Report on Nigeria Industrial Starches Market (2022–2027)...................... 2 Figure 12: Volume share (%) by type of starch, 2021, Nigeria [source: Mordor Intelligence Custom Report on Nigeria Industrial Starches Market (2022–2027) ......................................... 2 Figure 13: Market Share (%), by Application, Nigeria, 2021。Source: Mordor Intelligence Custom Report on Nigeria Industrial .......................................................................................... 3 Figure 14: Sources of starches in Nigeria, as of 2021.Source: Mordor Intelligence Custom Report on Nigeria Industrial Starches Market (2022–2027) ...................................................... 3 Figure 15: World regional share of cassava production ............................................................ 4 Figure 16: Cassava production by the ten top countries (FAOSTAT-2020) .............................. 5 Figure 17: Production of cassava in Nigeria per State............................................................... 5 List of Tables
摘要:使用简单的化学浴沉积方法,将纳米结构的铁二硫化物(FES 2)均匀沉积在再生纤维素(RC)和氧化的碳纳米管(CNT)基于氧化的碳纳米管(CNT)的复合膜上,以形成RC/CNT/FES/FES 2复合膜。RC/CNT复合膜是FES 2微球的均匀沉积的理想底物,这是由于其独特的多孔结构,较大的特定表面积和高电导率。polypyrole(PPY),一种导电聚合物,以提高其电导率和循环稳定性。由于FES 2具有高氧化还原活性和具有高稳定性和电导率的PPY的协同作用,RC/CNT/FES 2/PPY复合电极表现出出色的电化性能。用Na 2测试的RC/CNT/0.3FES 2/PPY-60复合电极因此,在1 mA cm-2的电流密度下,水溶液可以实现6543.8 mf cm-2的优异面积电容。电极在10,000电荷/放电周期后保留了其原始电容的91.1%。扫描电子显微镜(SEM)图像显示,在10,000周期测试后,在RC/CNT/0.3FES 2/PPY-60膜中形成了孔径为5-30μm的离子转移通道。由两种相同的RC/CNT/0.3FES 2/PPY-60复合电极组成的对称超级电容器设备提供了1280 MF CM - 2的高度电容,最大能量密度为329μWHCM - 2,最大功率密度为24.9 mW cm-w cm-w cm-w cm-w cm-w cm-2%,且86-2%2%。在40 mA cm-2处的循环在1.4 V的宽电压窗口进行测试时。这些结果表明,RC/CNT/FES 2/PPY复合电极的最大潜力用于制造具有高工作电压的高性能对称超级电容器。
微转移打印 (µ TP) 是一种很有前途的技术,可用于将 III-V 材料异质集成到基于 Si 的光子平台中。为了通过增加 III-V 材料和 Si 或 SiO 2 表面之间的粘附性来提高打印产量,通常使用像苯并环丁烯这样的粘附促进剂作为中间层。在这项工作中,我们展示了在没有任何粘合剂中间层的 SiO 2 中间层上基于 InP 的试样的 µ TP,并研究了无粘合剂键合的机理。源试样是基于 InP 的试样堆栈,位于牺牲层上,该牺牲层通过使用 FeCl 3 的化学湿法蚀刻去除。对于目标,我们在 8 英寸晶圆上制造了非晶硅波导,并用高密度等离子 SiO 2 封装,并通过化学机械抛光程序进行平坦化。我们使用 O 2 等离子体激活源和目标,以增加试样和基板之间的粘附性。为了更好地理解键合机理,我们应用了几种表面表征方法。利用原子力显微镜测量了等离子体激活前后 InP 和 SiO 2 的均方根粗糙度。利用光学台阶仪估算目标晶圆上微转移印刷源试样的台阶高度。利用 InP 的拉曼峰位置映射来分析等离子体激活前后 SiO 2 上可能的应变和接触角测量值,以观察表面亲水性的变化。利用 X 射线光电子能谱分析来表征 InP 源的 P2p、In3d、O1s 以及 SiO 2 目标的 Si2p、O1s 的表面能态。我们的结果表明,无需应变补偿层,就可以通过 µ TP 直接键合 InP 试样。这样,为使用 µ TP 进行 InP 异质集成提供了一种与互补金属氧化物半导体兼容的有希望的途径。
摘要。但是,电影制作是多年来盛行的研究方面,但尚未在学术领域进行彻底研究。必须在科学文献中制作电影的制作。本文将重点关注各种商业电影方法组织,重点关注詹姆斯·卡梅隆(James Cameron)著名的电影《阿凡达》(Avatar)。电影业务可以分为两种型号:业务和工作室模型。例如,阿凡达(Avatar)是一部新的3D电影,在商业和录音室模型中盛行。仍然,这部电影提供了工作室模型和技术利用的绝佳视角。最初制作的大片电影是为了满足感知到的观众的最佳价值观;也就是说,无论电影将花费多少,消费者愿意花多少钱。确切地说,必须确保在生产方面负担得起的电影制作,同时符合消费者的期望并获得利润。
这些官能团结合极性溶剂中的高特定表面积使得变得有效的各种有机和无机污染物的吸附剂。go被认为是一种非常有前途的材料,用于治疗放射性废物和自然水,因为它具有高分子的放射性核素能力。[3] GO还被广泛研究为吸附剂的各种污染物,包括例如染料,重金属和有机物。近年来,GO也被研究以吸附三价欧盟。[3A,4]在某些研究中,欧盟(III)被认为是核废料中其他三价灯笼和静脉的化学类似物。[5]因此,了解欧盟(III)的吸附特别有用,对于开发出更有效的吸附剂来用于核废料处理。应注意的是,近年来,与石墨烯相关材料的放射性核素和重金属的吸附相关的研究领域受到多次缩回的影响(例如,请参阅[6])和广泛的校正。[7]因此,在以前的一些研究中,与GO吸附有关的一些研究受到了损害。通常仅使用GO分散体进行吸附研究,但不使用实心石墨氧化物或多层GO层压板进行。GO分散体可以沉积在合适的底物上(例如,通过自旋涂层[8]或滴铸造[9]),以制成多层薄膜。分散剂也可以被填充以制作根据预期的纸张命名的独立箔,作为论文[10]或膜。[11]多层组件是由不规则形状的和大小的go akes形成的,互相堆积了近似平行的平面内部方向。多层GO的吸附特性有望受到C-tattice中层间尺寸的影响,因为水或其他用于溶解的极性溶剂的肿胀
该树脂是一个强大的热对方选项,对于想要将其产品转换为独特解决方案的设计师和制造商。这项技术的先进科学,结合了机械的最新进展以及纺织品的越来越高的精致,诸如可愉快的柔软触摸纹理,缺乏剩余的表面粘性,出色的处理属性以及良好的握把/防滑属性等好处。Pearlbond TM 301 TPU提供:
硅光子学已成为用于广泛应用的光子集成电路(PIC)的最广泛使用的平台之一。几乎所有这些都需要高速,低功率操作。调节剂仅基于硅,仅依赖于血浆分散效应来实现调节。血浆分散效应通过游离载体的移动引起材料的折射率变化,这意味着操作速度受这些载体的寿命限制,从而在数十吉哈特兹的命令下提供了最大可实现的带宽。在硅上新型材料的异质整合被认为是仅基于硅的调节剂的替代品。钛酸钡(BTO)就是一种可以集成到硅上的材料。在光子芯片上沉积为薄膜时,BTO表现出所有电极(EO)材料的最大塞子系数之一,同时是化学和热稳定的[1]。根据以下方程式,由于施加的电场e而导致的折射率n变化之间的线性关系给出了简化的描述:
