引言硅光子学在过去几十年中已成为高性能光子集成电路(PIC)的成熟技术。标准化的硅光子技术平台受益于公认的制造工艺,基于CMOS Electronics Microfrication的体验,并助长了PIC设计师作为标准图书馆组件的大量高性能设备。中,基于光圈谐振器的附加电源过滤器已证明成功地在波长分层多路复用(WDM)电路中操纵光谱通道。标准硅光子平台中的主动加载过滤器通常会利用热形或等离子体分散效应。热控制的附加电源过滤器提供多种可调性(> 10 nm),但MS响应时间缓慢[1]。他们的高功耗和热串扰限制了可以集成在单个电路中的组件的数量。附加滤波器提供了NS响应时间,没有实质性的串扰[2]。然而,此类过滤器通常具有有限的调谐范围,并且由于组件的活性区域中的光子载体散射而导致过多的光学损失。最近,微机电系统(MEMS)技术已被认为是增强标准硅光子学的绝佳途径。好处包括低功率运行,大型指数可调性以及与标准硅光子平台制造过程的兼容性[3]。迄今为止,通过实现可移动的波导和环/磁盘谐振器[4] - [6]来实现硅光子磁极加载滤波器。尽管如此,此类先前的演示需要定制的光子技术。
在此公告中出现的所有信息和建议涉及本文所述的产品的使用,均基于测试认为是可靠的。但是,确定自己使用此类产品的适用性是用户的责任。由于他人的实际用途是我们无法控制的,因此没有保证,明示或暗示是由Graver Technologies对这种使用的效果或要获得的结果做出的。Graver Technologies认为,由于其他人对此类产品的使用而没有责任。也不要将其解释为绝对完整的信息,因为在存在特定或特殊情况或情况时,可能需要或需要其他信息,或者是由于适用的法律或政府法规。ZTEC和TECPORE都是Graver技术的商标。LLC。
描述CleanSpace滋扰*气味过滤器是一种HEPA滤波器,具有一层活化的多气体碳,适合于刺激性水平的暴露不超过OSHA PEL。多气包括有机蒸气(OV),酸性气体(AG)和氨。niosh已批准。重要:选择清洁空间过滤器时,请咨询健康和安全专家,以了解适当的呼吸设备和过滤器使用的建议。
● 所有成分均满足USP 6级塑料制品在121℃生物测试特性的要求和美国联邦法规(CFR)第21章相关规定中所列的食品接触材料的要求,并符合中国《饮用水设备及防护材料卫生安全性评价标准》(2001)对饮用水输送和分配设备的要求。
5.重型过滤产品 GS 系列 - 中压直列过滤器 203 GA 系列 - 中压直列过滤器 207 BGAH 系列 - 中压直列过滤器 213 BGLS 系列 - 低压直列过滤器 219 SF1040 系列 - 低压直列过滤器 223 Eco 130 系列 - 中压过滤器 227 HFS 和 HFD 系列 - 高流量单联和双联过滤器 235 FMB - 模块化过滤器歧管块 243 DF2145 系列 - 双联过滤器 246 DFBO 系列 - 双联直列过滤器 250 DF40 系列 - 双联直列过滤器 253 DF2089 系列 - 双联过滤器 257 DF60 系列 - 双联过滤器 261 DF65 系列 - 双联过滤器 265 DF2110 系列 - 双联过滤器 269 DF2050系列 - 双工滤波器 273 DF2035系列 - 双工滤波器 277 DFH2060系列 - 双工滤波器 281 DF2070系列 - 双工滤波器 285
非线性过滤模型是一种设计安全流密码的古老且易于理解的方法。几十年来,大量的研究表明如何攻击基于此模型的流密码,并确定了用作过滤函数的布尔函数所需的安全属性,以抵御此类攻击。这导致了构造布尔函数的问题,这些函数既要提供足够的安全性,又要实现高效。不幸的是,在过去的二十年里,文献中没有出现解决这个问题的好方法。缺乏好的解决方案实际上导致非线性过滤模型或多或少变得过时。这对密码设计工具包来说是一个巨大的损失,因为非线性过滤模型的巨大优势在于,除了它的简单性和为面向硬件的流密码提供低成本解决方案的能力之外,还在于积累了有关抽头位置和过滤函数的安全要求的知识,当满足所有标准时,这让人对其安全性充满信心。在本文中,我们构造了奇数个变量(n≥5)的平衡函数,这些函数具有以下可证明的性质:线性偏差等于2−⌊n/2⌋−1,代数次数等于2⌊log2⌊n/2⌋⌋,代数免疫度至少为⌈(n−1)/4⌉,快速代数免疫度至少为1+⌈(n−1)/4⌉,并且这些函数可以使用O(n)NAND门实现。这些函数是通过对著名的Maiorana-McFarland弯曲函数类进行简单修改而获得的。由于实现效率高,对于任何目标安全级别,我们都可以构造高效的可实现函数,以提供对快速代数和快速相关攻击所需的抵抗级别。先前已知的可有效实现的函数具有过大的线性偏差,即使变量数量很大,它们也不合适。通过适当选择 n 和线性反馈移位寄存器的长度 L,我们表明有可能获得可证明 κ 位安全的流密码示例,这些密码对于各种 κ 值都可以抵御众所周知的攻击。我们为 κ = 80、128、160、192、224 和 256 提供了具体建议,使用长度为 163、257、331、389、449、521 的 LFSR 和针对 75、119、143、175、203 和 231 个变量的过滤函数。对于 80 位、128 位和 256 位安全级别,相应流密码的电路分别需要大约 1743.5、2771.5 和 5607.5 个 NAND 门。对于 80 位和 128 位安全级别,门数估计值与著名密码 Trivium 和 Grain-128a 相当,而对于 256 位安全级别,我们不知道任何其他流密码设计具有如此低的门数。关键词:布尔函数、流密码、非线性、代数免疫、高效实现。
非线性过滤模型是一种设计安全流密码的古老且易于理解的方法。几十年来,大量的研究表明如何攻击基于此模型的流密码,并确定了用作过滤函数的布尔函数所需的安全属性,以抵御此类攻击。这导致了构造布尔函数的问题,这些函数既要提供足够的安全性,又要实现高效。不幸的是,在过去的二十年里,文献中没有出现解决这个问题的好方法。缺乏好的解决方案实际上导致非线性过滤模型或多或少变得过时。这对密码设计工具包来说是一个巨大的损失,因为非线性过滤模型的巨大优势在于,除了它的简单性和为面向硬件的流密码提供低成本解决方案的能力之外,还在于积累了有关抽头位置和过滤函数的安全要求的知识,当满足所有标准时,这让人对其安全性充满信心。在本文中,我们构造了奇数个变量(n≥5)的平衡函数,这些函数具有以下可证明的性质:线性偏差等于2−⌊n/2⌋−1,代数次数等于2⌊log2⌊n/2⌋⌋,代数免疫度至少为⌈(n−1)/4⌉,快速代数免疫度至少为1+⌈(n−1)/4⌉,并且这些函数可以使用O(n)NAND门实现。这些函数是通过对著名的Maiorana-McFarland弯曲函数类进行简单修改而获得的。由于实现效率高,对于任何目标安全级别,我们都可以构造高效的可实现函数,以提供对快速代数和快速相关攻击所需的抵抗级别。先前已知的可有效实现的函数具有过大的线性偏差,即使变量数量很大,它们也不合适。通过适当选择 n 和线性反馈移位寄存器的长度 L,我们表明有可能获得可证明 κ 位安全的流密码示例,这些密码对于各种 κ 值都可以抵御众所周知的攻击。我们为 κ = 80、128、160、192、224 和 256 提供了具体建议,使用长度为 163、257、331、389、449、521 的 LFSR 和针对 75、119、143、175、203 和 231 个变量的过滤函数。对于 80 位、128 位和 256 位安全级别,相应流密码的电路分别需要大约 1743.5、2771.5 和 5607.5 个 NAND 门。对于 80 位和 128 位安全级别,门数估计值与著名密码 Trivium 和 Grain-128a 相当,而对于 256 位安全级别,我们不知道任何其他流密码设计具有如此低的门数。关键词:布尔函数、流密码、非线性、代数免疫、高效实现。
摘要 - 在事件相关的电位(ERP)信号分类中,在特定时间范围内识别相关的局部峰对于特征提取和随后的分类任务至关重要,尤其是在有关精神分裂症等精神疾病的研究中。但是,精神分裂症研究中的ERP数据通常包含许多对分类过程贡献的小峰。因此,至关重要的是,仅辨别和保留为改进分类结果传达特定特征的显着峰值。最近,基于高档和降尺度表示(UDR)技术的基于视觉的平滑算法已经证明了其在保留突出峰的特征时的有效性,同时从信号波形中滤除了非平衡峰。在UDR的操作下,输入信号在图像域中可视化。输入形状受到稀疏算法的影响,并将所得骨骼投射回信号域。此过程类似于神经科医生对信号的目视检查,在该信号中标记了突出的峰,而无关的峰被忽略了特征提取。这项研究将UDR应用于两个精神分裂症和匹配对照患者中记录的ERP的数据集,以评估其在信号分类中的有效性。此外,当使用较少的ERP通道时,我们分析了UDR对分类准确性的影响。我们使用多个分类器测试了这些效果。索引项 - 与事件相关电位(ERP),精神分裂症,平滑过滤器,信号处理,UDR,高档和下限表示实验结果表明,当在所有通道上应用UDR时,EEGNET表现出最显着的增强,精度增加了2.55%。此外,当信号时期的数量减半时,UDR在7个模型中有4个促进了增强,浅孔convnet的提高最高2.4%。值得注意的是,在仅FZ,CZ和PZ电极位置的信号形成的子数据集中使用UDR时,可以在更多模型上观察到精度增强。这些发现强调了UDR在增强精神分裂症分类准确性方面的有希望的潜力,尤其是应用于关注关键通道的数据集时。
在处理有害物质(去除石棉,重金属,致癌灰尘,冷却润滑剂等)中苛刻的空调技术(手术室 /医院重症监护病房,实验室,洁净室等)< / div>在高度敏感的工业过程中(药学,生物技术,化学,光学,食品加工,微电子学等)作为Dectusting技术的下游警察过滤器