过滤器的主要目的是吸收气流中的颗粒。在确保过滤时,环境条件必须是安全的。但是,在某些情况下,过滤器在爆炸性气氛等极端条件下运行。在这些情况下,过滤器的任务不仅是为了实现过滤,而且是消除爆炸风险。如果未消除这类风险,则可能在过程中爆炸,这些爆炸可能导致生产停工,对设备的损坏,甚至对工人的重大伤害。
基于石墨烯的材料允许在储能,电子开发,材料科学,光学,药物和水加工等领域的基本进展,这是由于其独特的二维结构,机械鲁棒性,较大的表面和高电导率。但是,几乎没有努力利用和研究这些材料来开发适合航天器应用的新水技术。这样的应用是将基于石墨烯的材料作为过滤介质的潜在用途。因此,研究这些新材料的吸附性能对于确定目前在具有水回收能力的太空车辆中使用/升级最先进的过滤媒体的机会至关重要。特别是如果由于扩展过滤能力而可以减少可消耗量的要求。通过在比较吸附和抗菌实验中测试许多基于石墨烯的材料,在石墨烯研究中进行了早期的生命支持系统研究,其中探测了污染物的去除效率,最大吸附能力和细菌减少的抗菌实验。这项初步调查为使用基于石墨烯的材料作为过滤介质提供了实用性,并讨论了该航天器饮用水系统的这种前瞻性过滤技术的扩展和优化。
在酿酒过程中,诸如植物胶体,果肉残基,淀粉纤维,细菌和酵母等各种污染物具有对葡萄酒质量的实质性影响。通过通过膜控制过滤精度,我们可以获得良好的感觉质量,并有效去除微生物以实现无菌填充。
• 物理污染包括污垢、沉积物和悬浮固体等颗粒,它们会影响水的外观和清澈度。这些污染物不仅使水不适合饮用,还可能携带有害物质。• 另一方面,化学污染是由一系列物质引起的,例如重金属(铅、汞和砷等)、农药以及来自制药和其他行业的有害化学物质。这些污染物会造成严重的健康影响,例如中毒、神经系统疾病和癌症。• 生物污染是指有害微生物,例如细菌(大肠杆菌、沙门氏菌)、病毒(诺如病毒、甲型肝炎)和寄生虫(贾第鞭毛虫、隐孢子虫),如果摄入,会引起胃肠道疾病和感染。
各种过滤和空气净化技术(包括管道内和室内)的有效性取决于空气污染物的性质、HVAC 布局和空气净化器在空间中产生的气流速率和模式、过滤和空气净化技术的工作原理及其正确应用。同行评议文献中的实验数据表明,一些过滤和空气净化技术可以有效去除或灭活空气污染物。然而,关于各种过滤和空气净化设备对人类健康的直接影响(包括短期和长期影响)的研究存在很大差异,这通常表明研究不足,无法得出确切的结论。此外,过滤和空气净化可能会产生积极和消极的次要后果,包括改变能源使用、影响工作表现、学习和旷工、排放空气净化的副产品以及改变建筑物居住者对室内环境的看法。与健康影响类似,关于其中一些后果的证据通常有限,无法得出确切的结论。
粒子和细胞。2,3 在传感原理中,单个分析物在电诱导下通过一个充满电解质的小孔(图 1,左图)会导致电解质离子阻塞而导致电阻瞬时可检测到的增加,这在 DNA 测序中可以区分非常相似的核碱基。4 单纳米孔研究通常受到生物通道和孔的启发,它们具有极高的离子选择性和通量,另外还可用作离子信号的开关、放大器和中继系统。5 因此,纳米孔用于制备模拟生物通道特性和控制溶液中离子传输的系统。6–9 此外,单纳米孔提供了一个模型系统来揭示纳米限制引起的新物理和化学现象、传输特性和传输模式。10–12 研究离子、小有机分子、折叠蛋白质、DNA 和 RNA 以及延伸有机聚合物和生物聚合物的传输。由于单纳米孔在生物传感和仿生学中的应用,人们主要在水性和明确定义的溶液中探测单纳米孔。根据应用的不同,单纳米孔的开口直径可为 0.3 至数百纳米,长度可从单个原子层到微米级。多孔膜在技术上与单孔系统截然不同。多孔膜的应用可能需要数千平方米的膜。多孔膜每年创造 100 亿美元的市场,在水基和非水过滤、气体分离、燃料电池和电池组以及包括小分子和折叠蛋白质在内的生物材料纯化(用于食品加工、生物技术和生物医学)中必不可少。15–18 在这些应用中,膜用作选择性屏障,允许一种或多种分子通过,同时主要将其他分子保留在表面上
薄膜中的纳米孔在科学和工业中起重要作用。单纳米孔在便携式DNA测序和了解纳米级传输中提供了逐步变化。在工业上,多层膜促进了食物加工和水和医学的净化。尽管统一使用了纳米孔,但在材料,制造,分析和应用方面,单个纳米孔和多膜的磁场在不同程度上有所不同。这样的部分断开连接阻碍了科学进步,并且最好共同解决重要的挑战。该观点表明,这两个领域之间的协同串扰如何在基本理解和高级膜的发展中提供相当大的相互利益。我们首先描述了主要差异,包括与多膜膜中较不定义的导管相比,包括单个孔的原子定义。然后,我们概述了改善两个字段之间的通信的步骤,例如协调测量以及运输和选择性的建模。所产生的见解有望改善多孔膜的合理设计。观点以其他发展的前景结束,可以通过在两个领域进行协作来最大程度地实现,以提高对纳米孔的运输的理解,并创建用于量身定制的用于感应,过滤和其他应用的下一代多孔膜。
背景 议会法案 (AB) 617 解决了环境正义 (EJ) 社区的当地空气污染问题。该法案于 2017 年 7 月签署成为州法律,重点是改善空气质量并减少受空气污染影响最严重的社区的标准空气污染物和有毒空气污染物 (TAC) 的暴露 1。该法案认识到 EJ 社区受到住宅附近空气污染源的不成比例的影响。该法案寻求通过社区驱动的行动来解决这些影响,重点是制定社区减排计划 (CERP) 和社区空气监测计划 (CAMP)。此外,该法案还侧重于清洁技术投资、最佳排放控制和更容易获取的排放数据。自 2018 年以来,加州空气资源委员会 (CARB) 已在南海岸空气质量管理区 (South Coast AQMD) 选择了六个社区参与 AB 617 计划。这些社区如下所示。
摘要:结膜纤维化仍然是青光眼滤过手术成功的主要障碍。抗代谢药物仍然是减轻术后纤维化的黄金标准,但它们与高并发症率和手术失败率有关。建立一种更有针对性的方法来减轻结膜纤维化可能会彻底改变青光眼的手术方法。需要一种新的策略来防止进行性组织重塑和纤维化疤痕的形成,从而提高手术成功率并降低青光眼相关视力丧失的患病率。我们对结膜组织结构中的分子信号和生物力学线索的理解不断进步,为减轻纤维化的新疗法和生物材料开辟了新前景。本综述旨在强调针对青光眼滤过手术中纤维化的策略和有希望的未来方法的现状。
随着特征尺寸的减小和晶圆尺寸的增大,在此期间,支持这些设施的设备成本飞涨。一个全新的芯片工厂可能耗资超过 100 亿美元,但预期投资回报期为 3 年。运营成本过去和现在都很高,而且由于技术在不断发展,生产空间的灵活性至关重要。降低成本、提高产量和开发下一代技术的持续压力促使许多供应商尽其所能进行创新,特别是在提高效率和降低总拥有成本 (TCO) 方面。PTFE 过滤器就是其中一项创新,因为在这十年中,折叠和测试能力得到了极大改善。