已研究了将Barite-fuorspar矿物废物(BFMW)纳入一种细节添加剂,因为它对水泥砂浆的机械和屏蔽性能的影响。制备了几种砂浆混合物,以不同比例的BFMW为0%至30%,作为细胞骨料替代。水泥砂浆混合物的密度,压缩和拉伸强度以及伽马射线辐射屏蔽。结果表明,包含25%BFMW的砂浆混合物达到最高的抗压强度值,超过50 MPa。通过实验测试和使用Microshield软件包计算的计算测量伽马射线衰减的评估,结果表明,使用BFMW聚集体可将衰减系数增加约20%。这些发现表明,矿物废物可以适当用作部分替换骨料,以改善辐射屏蔽以及降低砂浆和混凝土成本。2016 Elsevier Ltd.保留所有权利。
扩散张量成像(DTI)是磁共振成像(MRI)的高级方式,它扩展了扩散加权成像(DWI)的能力。DWI测量水扩散信号,DTI利用来自多个扩散方向的数据来绘制大脑中水分子的三维扩散,从而使其微观结构组织的评估。源自DTI的密钥指标包括分数各向异性(FA),它反映了白质微结构的完整性;平均扩散率(MD),这表明了总水扩散的大小,并且与细胞密度和细胞外空间有关。和径向扩散率(RD),代表垂直于轴突纤维的扩散,与髓磷脂状况相关[1]。dTI已应用于神经康复领域,研究报告了基于白质分析[2-4],其效用在预测中风和创伤性脑损伤后的运动和功能恢复方面。此外,DTI已用于调查神经退行性疾病的白质变化[5-7],并提供了一种定量方法来评估细微的微结构变化,而常规MRI很难检测到这些变化[8,9]。
摘要:在电信 C 波段中,1550 nm 处的纠缠光子生成至关重要,因为它能够利用已部署的电信基础设施实现长距离量子通信协议。InAs 外延量子点最近已实现在此波长范围内按需生成纠缠光子。然而,由精细结构分裂引起的时间相关状态演化目前将保真度限制在特定的纠缠态。在这里,我们展示了使用微机械压电致动器对 InAs 量子点的精细结构抑制,并演示了在 1550 nm 处生成高度纠缠的光子。在最低精细结构设置下,我们获得了 90.0 ± 2.7% 的最大保真度(同时率为 87.5 ± 3.1%)。对于中等(弱)时间滤波,同时性仍然很高,值接近 80%(50%),分别对应于收集到的光子的 30%(80%)。所提出的精细结构控制为在基于光纤的量子通信协议中利用量子点的纠缠光子开辟了道路。关键词:半导体量子点、纠缠光子、应变调谐、精细结构分裂、量子态层析成像、电信波长、单光子源
$ evwudfw 2 *urzwk lq wkh xvdjh ri khwhurjhqrxv lqwhlq和fklsohwv edvlq lq lq lqdqfhg lqdqfhg iru iru iru iru iru。 ohdglqj和olnh $,dqg +3&lv和iru jigh 1月份fkls vl] hv wkdw h [fhg] h [srvuh ilhog 6lpxowdqhrxhrxhrxvo \ wkhvh及其和这个and this ululqr plpdooohu olqhzlgwkwk frqhfwlqv lq lq wkhlu uhglvwlrq od \ huv wr phw wwhw wwis,2 ghqvlw \ and edqglgwk和anyshophudqfhqwv,q wklv sdshu ghprqvwudwh和iru这是olqhv olqhv和iLhog vilwfk erxqgdu \ whvwv what what and lpsdfw ri lpsdfw ri。 whf vwfulfdo uhvlvwdqfh ru ohdndjhqw fxuhqw:vkrz wkdw word and lv yldeow wruw wruw ilqs ilqs ilood isisis isisis isisisisisisisisisionary isisisisisionary iruju odujh odujh odujh DUHD SDFNDJHV
1 香港理工大学生物医学工程学系,香港 999077;jayce.zhang@connect.polyu.hk (JZ);yanhuan.huang@connect.polyu.hk (YH);19073922r@connect.polyu.hk (FY);bibo.yang@polyu.edu.hk (BY) 2 国家北京康复辅具研究中心,老年残疾康复辅具北京市重点实验室,北京 100176,中国; lizengyong@nrcrta.cn 3 香港理工大学行为及系统神经科学大学研究中心(UBSN),香港 999077,中国 4 香港理工大学深圳研究院,深圳 518000,中国 5 香港理工大学智能老龄化研究所(RISA),香港 999077,中国 * 通讯地址:xiaoling.hu@polyu.edu.hk;电话:+852-3400-3206
委员会认为,英特尔对其贸易伙伴采取了两种商业行为,即赤裸裸的限制和有条件的回扣,这是这种滥用行为的特征。更具体地说,关于有条件的回扣,英特尔被发现向四家战略原始设备制造商(“OEM”)(戴尔、联想、惠普和 NEC)提供回扣,条件是这些 OEM 必须从英特尔购买全部或几乎所有的 x86 中央处理器(CPU)。同样,英特尔被发现向一家欧洲微电子设备零售商(Media-Saturn-Holding;“MSH”)支付款项,条件是 MSH 只销售装有英特尔 x86 CPU 的电脑。这些回扣和付款(“有争议的回扣”)确保了四家 OEM 和 MSH 的忠诚度,从而大大削弱了竞争对手凭借自己的 x86 处理器进行竞争的能力。委员会认为,英特尔的反竞争行为导致消费者选择减少,创新动力降低。
城市植被被广泛用于缓解空气颗粒物 (PM) 污染对城市居民健康的威胁。然而,不同植被配置对街峡谷中兴趣点(如背风墙、迎风墙、行人水平)的植被影响尚不明确。因此,我们使用数值模拟方法来评估不同植被配置 (VC)(如两侧和迎风面或背风面各侧种植树木或乔灌木)的几种树种在垂直风下对街峡谷中交通源 PM 污染物的影响 (VE)。总 VE 从 4.0% 到 20.6% 不等,而行人水平 VE 从 3.5% 到 15.4% 不等,具体取决于不同的 VC。由于沉降速度较快,柏树种的总 VE 值从 3.5% 到 11.5% 不等,行人水平 VE 值从 4.8% 到 10.9% 不等,优于相同 VC 的其他树种。在仅使用树木的情况下,背风面的植被覆盖率最高(行人水平 VE:3.3% e 10.9%;总 VE:2.1% e 11.5%),该处更靠近污染较重的区域,对风的移动阻碍较少。我们发现,在街道峡谷两侧种植柏树增强型乔灌木配置是最佳策略,可使总 VE 值提高 19.3% e 20.6%,行人水平 VE 提高 14.1% e 15.4%,并缓解街道中心高浓度的 PM2.5 。背风墙的 VE 与空气动力学参数 ( C d LAD ) 显著相关 (P < 0.001),而迎风墙和行人水平的 VE 与沉积参数 ( LAD vd ) 显著相关 (P < 0.001)。显然,通过充分利用植被的压力损失系数来改变污染物分布,并选择沉积速度快的植被来过滤更多的污染物,可以改善街道峡谷的空气质量。我们的研究为城市规划者和设计师提供了见解,以制定最佳的城市林业管理实践。© 2020 Elsevier Ltd. 保留所有权利。
随着互连密度不断缩小,以及制造更细间距基板的成本不断上升,使用传统有机堆积基板的倒装芯片封装在细间距布线方面面临着重大挑战。为了满足这些需求,TSV 中介层应运而生,成为一种良好的解决方案 [1-3]。TSV 中介层提供高布线密度互连,最大限度地减少 Cu/低 k 芯片与铜填充 TSV 中介层之间的热膨胀系数 (CTE) 失配,并由于芯片到基板的互连更短而提高电气性能。TSV 中介层晶圆是通过在硅晶圆上蚀刻通孔并用金属填充通孔来制造的。业界常用的两种 TSV 方法涉及“先通孔/中通孔”和“后通孔”工艺流程。本文中的工作使用“先通孔/中通孔”流程,因为它提供了互连密度的最大优势。通常,使用深反应离子蚀刻 (DRIE) 工艺蚀刻 TSV 通孔以形成高纵横比通孔。 TSV 的直径通常为 10-20 微米,深度为 50-100 微米。TSV 的壁衬有 SiO2 电介质。然后,形成扩散屏障和铜种子层。通过电化学沉积用铜填充通孔。使用化学机械抛光/平坦化 (CMP) 去除铜覆盖层。使用标准后端制造工艺在中介层顶部形成 M1 – Mx 的互连线。中介层顶部涂有钝化层并形成微凸块焊盘。
运动技能,尤其是笔迹等精细的运动技能,在学术追求和日常生活中起着至关重要的作用。传统的教授这些技能的方法,尽管有效,但可能会耗时且不一致。随着机器人技术和人工智能等广告技术的兴起,对自动化此类教学过程的兴趣越来越多。在这项研究中,我们研究了一位虚拟AI老师在模拟人工教育技术中进行运动技能的技术的潜力。我们介绍了一个AI教师模型,该模型捕获了人类构造的独特特征。使用辅助学习环境对模仿教师学习者的互动,我们测试了AI模型针对四个指导假设进行了测试,强调了能够证明的学习者表现,提高了技能掌握率,并降低了学习成果的变异性。我们的发现,在合成学习者上得到验证,揭示了所有测试过的假设的重大证明。值得注意的是,我们的模型在不同的学习者和设置中展示了鲁棒性,并展示了对笔迹的适应性。这项研究强调了将模仿和巩固学习模型与机器人技术相结合的潜力,以彻底改变关键运动技能的教学。
晶粒尺寸是确定性的微观结构特征,可以使六角形封闭式(HCP)金属中变形的作用。尽管变形孪生是改善结构合金强度 - 降解性权衡的最有效机制之一,但随着晶粒尺寸的减少,其激活降低。这项工作报告了通过引入延性延展性的以身体为中心的立方体(BCC)纳米层接口的细粒度HCP微结构中变形孪生激活的发现。利用基于激光的添加剂制造的快速凝固和冷却条件,以获得精细的微观结构,并与强化的内在热处理结合使用,允许生成BCC纳米层。原位高能同步加速器X射线衍射允许实时跟踪机械孪生的激活和演变。获得的发现显示了延性纳米层的潜力,用于具有改善寿命跨度的HCP损伤耐受材料的新设计。