猴子中的电生理研究表明,手指截肢会触发局部重塑,内部的原发性体感皮质(S1)。人类神经影像学研究表明,即使在截肢后数十年,也表明了缺失手指的持续代表。在这里,我们探讨了这种明显的矛盾是否源于低估手部图中手指的分布的外围和中心表示。使用药理学单指神经阻滞和7-Tesla神经影像学,我们首先复制了局部S1重新映射的先前帐户(电生理和其他)。局部阻塞还触发了整个手部区域的活动的活动变化。使用利用指定代表重叠的方法,我们还表明,尽管输入损失,但被阻塞的手指表示仍然持久。计算建模表明,局部稳定性和全局重组都是由地形图基础的分布处理以及稳态机制结合的。我们的发现揭示了复杂的指代代表性特征,这些特征在大脑(RE)组织,超越(RE)映射中起着关键作用。
用于恢复手机功能的脑机界面(BMI)临床翻译的关键因素将是其任务变化的稳健性。具有功能性电刺激(FES),例如,患者的手将用于在其他相似运动中产生各种力量。为了调查任务变更对BMI性能的影响,我们训练了两个恒河猕猴,用身体的手控制虚拟手,同时我们将弹簧添加到每个手指组(索引或中环或中小型小组)或改变其手腕姿势。使用同时记录的心脏内神经活性,手指位置和肌电图,我们发现跨环境中预测手指运动学和与手指相关的肌肉激活导致预测误差的显着增加,尤其是肌肉激活。但是,关于在线BMI对虚拟手的控制,更改培训任务上下文或在线控制过程中手的身体上下文对在线绩效的影响很小。我们通过表明神经种群活动的结构在新情况下仍然相似,从而解释了这种二分法,这可以在线快速调整。此外,我们发现神经活动在新环境中与所需的肌肉激活成正比移动,可能解释了偏见的运动学预测,并提出了一种可以帮助预测不同幅度肌肉激活的特征,同时产生相似的运动学。
猴子中的电生理研究表明,手指截肢会触发局部重塑,内部的原发性体感皮质(S1)。人类神经影像学研究表明,即使在截肢后数十年,也表明了缺失手指的持续代表。在这里,我们探讨了这种明显的矛盾是否源于低估手部图中手指的分布的外围和中心表示。使用药理学单指神经阻滞和7-Tesla神经影像学,我们首先复制了局部S1重新映射的先前帐户(电生理和其他)。局部阻塞还触发了整个手部区域的活动的活动变化。使用利用指定代表重叠的方法,我们还表明,尽管输入损失,但被阻塞的手指表示仍然持久。计算建模表明,局部稳定性和全局重组都是由地形图基础的分布处理以及稳态机制结合的。我们的发现揭示了复杂的指代代表性特征,这些特征在大脑(RE)组织,超越(RE)映射中起着关键作用。
摘要 关于运动技能习得背后的皮质改变仍存在争议。在这项针对年轻人的纵向研究中,我们在 6 周内每周进行一次表现和神经影像学 (7 T MRI) 测量,以研究与学习用非惯用手同时按压手指的序列相关的神经变化。干预组 (n = 33)(在家练习手指序列)和对照组 (n = 30,未在家练习)均表现出总体表现改善,但是干预组进行强化训练的序列表现改善更多,且与未进行强化训练的序列相比更一致。与未进行训练的序列相比,双侧顶叶和运动前皮质的大脑活动对于训练过的序列有所减少。未检测到与训练相关的主要感觉运动区域的变化。训练过和未训练序列之间的激活模式相似性在次要感觉运动区域降低,但在主要感觉运动区域没有降低,而不同训练过序列之间的激活模式相似性没有显示出可靠的变化。无论是试验中激活模式的变异性,还是大脑结构的估计值,都没有显示出与练习相关的、达到统计显著性的变化。总体而言,学习配置序列的主要相关性是次级运动区域大脑活动的减少。
1。斯坦福大学神经外科系2。Neurosurgery系,德克萨斯大学奥斯汀,奥斯汀,德克萨斯州奥斯汀 +这项工作主要在斯坦福大学进行。 3。 美国加利福尼亚州斯坦福大学斯坦福大学的霍华德·休斯医学院4. VA RR&D神经园艺与神经技术中心,康复研发服务,普罗维登斯VA医疗中心,美国RI,美国RI 5。 工程学院,布朗大学,美国普罗维登斯,美国,美国6。 Robert J.和Nancy D. Carney脑科学研究所,布朗大学,普罗维登斯,RI,美国7。 马萨诸塞州波士顿,马萨诸塞州马萨诸塞州马萨诸塞州医学院神经科学和神经记录中心,美国马萨诸塞州,美国马萨诸塞州8。 Wu Tsai神经科学学院,斯坦福大学,加利福尼亚州斯坦福大学,美国9。 Bio-X研究所,斯坦福大学,美国加利福尼亚州斯坦福大学Neurosurgery系,德克萨斯大学奥斯汀,奥斯汀,德克萨斯州奥斯汀 +这项工作主要在斯坦福大学进行。3。美国加利福尼亚州斯坦福大学斯坦福大学的霍华德·休斯医学院4.VA RR&D神经园艺与神经技术中心,康复研发服务,普罗维登斯VA医疗中心,美国RI,美国RI 5。工程学院,布朗大学,美国普罗维登斯,美国,美国6。 Robert J.和Nancy D. Carney脑科学研究所,布朗大学,普罗维登斯,RI,美国7。 马萨诸塞州波士顿,马萨诸塞州马萨诸塞州马萨诸塞州医学院神经科学和神经记录中心,美国马萨诸塞州,美国马萨诸塞州8。 Wu Tsai神经科学学院,斯坦福大学,加利福尼亚州斯坦福大学,美国9。 Bio-X研究所,斯坦福大学,美国加利福尼亚州斯坦福大学工程学院,布朗大学,美国普罗维登斯,美国,美国6。Robert J.和Nancy D. Carney脑科学研究所,布朗大学,普罗维登斯,RI,美国7。 马萨诸塞州波士顿,马萨诸塞州马萨诸塞州马萨诸塞州医学院神经科学和神经记录中心,美国马萨诸塞州,美国马萨诸塞州8。 Wu Tsai神经科学学院,斯坦福大学,加利福尼亚州斯坦福大学,美国9。 Bio-X研究所,斯坦福大学,美国加利福尼亚州斯坦福大学Robert J.和Nancy D. Carney脑科学研究所,布朗大学,普罗维登斯,RI,美国7。马萨诸塞州波士顿,马萨诸塞州马萨诸塞州马萨诸塞州医学院神经科学和神经记录中心,美国马萨诸塞州,美国马萨诸塞州8。Wu Tsai神经科学学院,斯坦福大学,加利福尼亚州斯坦福大学,美国9。 Bio-X研究所,斯坦福大学,美国加利福尼亚州斯坦福大学Wu Tsai神经科学学院,斯坦福大学,加利福尼亚州斯坦福大学,美国9。Bio-X研究所,斯坦福大学,美国加利福尼亚州斯坦福大学
研究 脑信号 手指数量 信号处理链 准确度(%) [11] EEG 4 CWD&2LCF 43.5 [12] EEG 5 RF&LDA&SVM&KNN 54 [13] EEG 5 LSTM&CNN&RCNN 77 [14] EEG 5 PCA&PSD&SVM 77 [15] MEG 5 SVM 83 [16] MEG 5 BPF&频谱图&SVM 57 [17] ECOG 5 CNN&RNN&LSTM 49 [18] ECoG 4 BPF&Morlet小波字典&STMC 85 [19] ECoG 5 CSP&SVM 86.30 [20] fNIRS 2 SVM 62.05 [21] EMG 1小波&自回归&SVM 76
此预印本的版权所有者于 2024 年 2 月 8 日发布此版本。;https://doi.org/10.1101/2024.02.06.578107 doi:bioRxiv preprint
摘要:脉搏血氧饱和度代表现代医学中光学的无处不在的临床应用。最近的研究引起了人们对混杂因素的潜在影响的担忧,例如可变的皮肤色素沉着和灌注对脉搏血氧仪中血氧饱和度测量精度的影响。模拟幻影测试提供了低成本,控制良好的解决方案,用于表征设备性能并研究潜在的误差源,从而可以减少对体内昂贵的体内试验的需求。这项研究的目的是开发基于幻影的脉搏血氧仪的测试方法。材料光学和机械性能审查,选择和调整以达到最佳的生物学相关性,例如,含氧组织的吸收和散射,强度,强度,弹性,硬度以及代表人手指的几何形状和组成的其他参数,例如血管大小和分布和分布和灌注。相关的解剖学和生理特性总结并实施,以创建初步的手指幻影。为了创建初步的手指幻影,我们合成了一个具有散射器的高符合硅胶基质,用于嵌入柔性管,并研究了这些散射物在新颖的3D打印树脂中以进行光学性能控制,而无需改变机械稳定性,而不改变具有与生物学特征的幻象的产生。幻影实用程序。3D印刷幻象在生物学上相关的条件更加相关。这些初步结果表明,幻影具有强大的潜力,可以发展为评估脉搏血氧仪性能的工具。差距,建议和策略是为了持续的幻影开发而提出的。
摘要 将脑机接口 (BMI) 应用于临床以恢复手部运动功能的一个关键因素是其对任务变化的稳健性。例如,使用功能性电刺激 (FES),患者自己的手将用于在其他方面类似的运动中产生各种各样的力量。为了研究任务变化对 BMI 性能的影响,我们训练了两只恒河猴用它们的物理手控制虚拟手,同时我们在每个手指组(食指或中指-无名指-小指)中添加弹簧或改变它们的手腕姿势。通过同时记录皮层内神经活动、手指位置和肌电图,我们发现在一种环境下训练的解码器不能很好地推广到其他环境下,导致预测误差显著增加,尤其是对于肌肉激活。然而,对于虚拟手的在线 BMI 控制,在线控制期间改变解码器训练任务环境或手的物理环境对在线性能几乎没有影响。我们通过展示神经群体活动的结构在新的环境中保持相似来解释这种二分法,这可以实现在线快速调整。此外,我们发现神经活动会根据新环境中所需的肌肉激活按比例改变轨迹。神经活动的这种转变可能解释了对非背景运动学预测的偏差,并提出了一种特征,该特征可以帮助预测不同幅度的肌肉激活,同时产生相似的运动学。
沿进化量表相对有选择地移动纤维的能力增加了。,即使在人类中,当一个数字移动时,其他数字也会移动。意想不到的数字运动的部分原因是手的生物力学及其肌肉的生物力学,部分原因是控制纤维的神经系统。这些神经系统每个都包含许多单个神经元,这些神经元的输出在多个肌肉的脊髓运动神经元库中有差异。由于这些因素会导致运动的运动,因此动力学家移动任何给定的数字的收缩伴随着其他肌肉的收缩,以稳定其他数字和手腕。主要运动皮层(M1)主导着对人类自愿运动的控制,与其他支付的系统一起起作用,以雕刻激动剂,拮抗剂和稳定肌肉的协调作用。在任何手机运动中,神经活动都分布在宽的M1领域,该区域与其他纤维运动过程中的区域广泛重叠。因此,皮质病变永远不会损害仅一位数字的功能。M1或皮质脊髓道的病变损害相对选择性或“个性化”的延伸纤维运动,而不是浮雕。单独的机制可能是强度与个性化的基本恢复。