将几何模型拟合到离群污染数据上是可证明的难点。许多计算机视觉系统依靠随机抽样启发式方法来解决稳健拟合问题,但这种方法不提供最优性保证和误差界限。因此,开发新方法来弥合成本高昂的精确解决方案与无法提供质量保证的快速启发式方法之间的差距至关重要。在本文中,我们提出了一种用于稳健拟合的混合量子经典算法。我们的核心贡献是一种新颖的稳健拟合公式,它可以解决一系列整数程序并以全局解或误差界限终止。组合子问题适合量子退火器,这有助于有效地收紧界限。虽然我们对量子计算的使用并没有克服稳健拟合的根本难点,但通过提供误差界限,我们的算法是对随机启发式算法的实际改进。此外,我们的工作代表了量子计算在计算机视觉中的具体应用。我们展示了使用实际量子计算机(D-Wave Advantage)和通过模拟 1 获得的结果。
几何模型拟合是一个具有挑战性但又十分基础的计算机视觉问题。最近,量子优化已被证明可以增强单模型情况的稳健拟合,同时多模型拟合的问题仍未得到解决。为了应对这一挑战,本文表明后一种情况可以从量子硬件中显著受益,并提出了第一种多模型拟合 (MMF) 的量子方法。我们将 MMF 表述为一个问题,现代绝热量子计算机可以对其进行有效采样,而无需放宽目标函数。我们还提出了一种迭代和分解版本的方法,该方法支持真实世界大小的问题。实验评估在各种数据集上都显示出有希望的结果。源代码可在以下位置获得:https://github.com/FarinaMatteo/qmmf 。
对位置敏感的SIPM在所有光检测应用中都有用,需要少量读出通道,同时保留有关传入光的相互作用位置的信息。专注于2x2阵列的LG-SIPM,覆盖15的面积。5×15。 5 mm只有6个读数,我们提出了一种定量方法来评估图像重建性能。 该方法基于一种统计方法,以评估设备的精度(空间分辨率)和重建重点重心的精度(线性)。 通过大米概率分布函数拟合来实现此评估。 我们获得了平均传感器空间分辨率的最佳值81±3 µm(标准偏差),这是通过以通道输出信号的幅度重建每个位置来实现的。 相应的精度为231±4 µm。5×15。5 mm只有6个读数,我们提出了一种定量方法来评估图像重建性能。该方法基于一种统计方法,以评估设备的精度(空间分辨率)和重建重点重心的精度(线性)。通过大米概率分布函数拟合来实现此评估。我们获得了平均传感器空间分辨率的最佳值81±3 µm(标准偏差),这是通过以通道输出信号的幅度重建每个位置来实现的。相应的精度为231±4 µm。
背景:在最近的Covid-19大流行期间,锡克教宗教界的成员参加了医学,牙科,护理或盟友卫生学校,或者已经从事医学专业的人必须做出一个艰难的决定,是否要剃光他们的胡须,以继续他们的学校和职业,还是改变了他们的投影专业或改变他们的专业志向或职业。他们面临着艰巨的任务,即确保自己受到职业空中危害,同时也遵守宗教和文化期望。在大流行的最初阶段缺乏可用的替代方案进一步需要探索创造性解决方案。
摘要本文的目的是1)使用探索性文献概述,以确定与女性消防员的不合适服装和职业装备有关的问题,以及2)使用感应方法来开发可推广的运动专业人员,以通过与行动和伤害风险相关的出版同伴审查的重要主题来识别出可利用的锻炼专业人员。研究,包括定性方法和定量方法,都表明,当前的大多数个人防护服(PPC)和操作装备都是为了适应有限的男性体形而开发的。因此,PPC和Gear的不当拟合提出了许多担忧,如果没有解决,将继续向消防员,尤其是女性消防员面临不必要的职业挑战和风险。这些问题包括但不限于增加危险物质暴露的风险,较高的温度调节挑战,较高的损伤风险,由于职业任务期间的代偿性生物力学运动以及降低的自我效能感和情感健康状况。针对身体状况的对策,与PPC和齿轮拟合不当相关的靶向伤害风险因素或其他问题可能包括增强和稳定身体的特定关节或区域(例如核心,肩膀和背部),从而减少与健康相关的风险因素,从而减少对问题进行扩大问题(例如,身体成分)(例如身体成分),以及咨询专业人员(E. e.g.-g.-g.-f),TOKAC-F.F.-F.-F.-F),TOC-F),T),T),T),T),T),T)。尽管仍需要进行持续的研究,但提供的数据和随后的建议可能会对女性消防员的伤害风险减少风险和个性化锻炼训练的注意事项提出宝贵的见解,而女性消防员考虑了不当PPC的拟合度。
描述 用于分析空间点模式的综合开源工具箱。主要关注任何空间区域中的二维点模式,包括多类型/标记点。还支持三维点模式、任意维度的时空点模式、线性网络上的点模式和其他几何对象的模式。支持空间协变量数据,例如像素图像。包含 3000 多个用于绘制空间数据、探索性数据分析、模型拟合、模拟、空间采样、模型诊断和形式推理的函数。数据类型包括点模式、线段模式、空间窗口、像素图像、镶嵌和线性网络。探索性方法包括样方计数、K 函数及其模拟包络、最近邻距离和空白空间统计、Fry 图、成对相关函数、核平滑强度、交叉验证带宽选择的相对风险估计、标记相关函数、分离指数、标记依赖性诊断和协变量效应的核估计。还支持随机模式的正式假设检验(卡方、Kolmogorov-Smirnov、蒙特卡罗、Diggle-Cressie-Loosmore-Ford、Dao-Genton、两阶段蒙特卡罗)和协变量效应检验(Cox-Berman-Waller-Lawson、Kolmogorov-Smirnov、ANOVA)。可以使用与 glm() 类似的函数 ppm()、kppm()、slrm()、dppm() 将参数模型拟合到点模式数据。模型类型包括泊松、吉布斯和考克斯点过程、奈曼-斯科特聚类过程和行列式点过程。模型可能涉及对协变量的依赖、点间相互作用、聚类形成和对标记的依赖。模型通过最大似然法、逻辑回归法、最小对比度法和复合似然法进行拟合。可以使用函数 mppm() 将模型拟合到点模式列表(重复的点模式数据)。除了上面列出的所有特征外,该模型还可以包括随机效应和固定效应,具体取决于实验设计。
a。按照AS/NZS 4131的注释A2(即,在20ºC和80ºC的测试温度下至少2个应力水平进行压力测试)。每个温度的最低应力水平是对应于原始ISO 9080分析的2500 h故障时间。将在每个级别测试三个样本。这些失败的时间不得低于根据原始分类数据得出的相应应力水平计算出的99.5%LPL值。未能满足此要求将意味着该化合物已经发生了足够的变化以需要完全评估。
模型验证取决于预测数据和实验数据之间的一致性。但是,找到问题的解决方案,这些方程式由许多参数的方程式描述,即使是它们的数量级也不知道,这是一项艰巨的任务。这使得在多维和非线性数据的情况下,曲线拟合非常困难。本文采用混合随机和确定性方法提出了一个基于图形的用户界面程序,该程序可以通过最小化测量数据与根据数学表达式计算的数据之间的差异来轻松且可靠地确定模型参数。该程序已在多个实验室中广泛使用,事实证明,该程序在许多不同领域的模型参数中有效,例如对配体 - 受体结合的药理学研究,人群的昆虫学研究,细菌生长,光合作用,光合作用,毒理学,毒理学,差异扫描热量量表和核能均匀仪,以及核能均匀磁构成和核能。对于面对从多维和非线性数据估算模型参数的问题的研究人员来说,这是一个有效的解决方案,参数尚不清楚。
我们的生产范围涵盖了门,地球,支票,蝴蝶和球阀,法兰,圣诞树和井口设备以及各种特殊阀门和产品,这些特殊阀门和产品广泛用于石油和天然气,石化,发电厂,地热,造船,造船,采矿,水处理,水处理和其他工业系统。